\[ y'(x)=\frac {4 (a-1) (a+1) x}{a^6 x^4-3 a^4 x^4-2 a^4 x^2 y(x)^2+3 a^2 x^4+4 a^2 x^2 y(x)^2+a^2 y(x)^4-x^4-2 x^2 y(x)^2-y(x)^4+4 y(x)} \] ✓ Mathematica : cpu = 1.49978 (sec), leaf count = 1269
\[\left \{\left \{y(x)\to \frac {c_1}{3 \left (a^2-1\right )}+\frac {\sqrt [3]{-18 x^2 c_1 a^6+54 x^2 c_1 a^4+54 a^4-54 x^2 c_1 a^2-108 a^2+2 c_1^3+18 x^2 c_1+\sqrt {4 \left (-3 x^2 a^6+9 x^2 a^4-9 x^2 a^2+3 x^2-c_1^2\right ){}^3+\left (-18 x^2 c_1 a^6+54 x^2 c_1 a^4+54 a^4-54 x^2 c_1 a^2-108 a^2+2 c_1^3+18 x^2 c_1+54\right ){}^2}+54}}{3 \sqrt [3]{2} \left (a^2-1\right )}-\frac {\sqrt [3]{2} \left (-3 x^2 a^6+9 x^2 a^4-9 x^2 a^2+3 x^2-c_1^2\right )}{3 \left (a^2-1\right ) \sqrt [3]{-18 x^2 c_1 a^6+54 x^2 c_1 a^4+54 a^4-54 x^2 c_1 a^2-108 a^2+2 c_1^3+18 x^2 c_1+\sqrt {4 \left (-3 x^2 a^6+9 x^2 a^4-9 x^2 a^2+3 x^2-c_1^2\right ){}^3+\left (-18 x^2 c_1 a^6+54 x^2 c_1 a^4+54 a^4-54 x^2 c_1 a^2-108 a^2+2 c_1^3+18 x^2 c_1+54\right ){}^2}+54}}\right \},\left \{y(x)\to \frac {c_1}{3 \left (a^2-1\right )}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{-18 x^2 c_1 a^6+54 x^2 c_1 a^4+54 a^4-54 x^2 c_1 a^2-108 a^2+2 c_1^3+18 x^2 c_1+\sqrt {4 \left (-3 x^2 a^6+9 x^2 a^4-9 x^2 a^2+3 x^2-c_1^2\right ){}^3+\left (-18 x^2 c_1 a^6+54 x^2 c_1 a^4+54 a^4-54 x^2 c_1 a^2-108 a^2+2 c_1^3+18 x^2 c_1+54\right ){}^2}+54}}{6 \sqrt [3]{2} \left (a^2-1\right )}+\frac {\left (1+i \sqrt {3}\right ) \left (-3 x^2 a^6+9 x^2 a^4-9 x^2 a^2+3 x^2-c_1^2\right )}{3\ 2^{2/3} \left (a^2-1\right ) \sqrt [3]{-18 x^2 c_1 a^6+54 x^2 c_1 a^4+54 a^4-54 x^2 c_1 a^2-108 a^2+2 c_1^3+18 x^2 c_1+\sqrt {4 \left (-3 x^2 a^6+9 x^2 a^4-9 x^2 a^2+3 x^2-c_1^2\right ){}^3+\left (-18 x^2 c_1 a^6+54 x^2 c_1 a^4+54 a^4-54 x^2 c_1 a^2-108 a^2+2 c_1^3+18 x^2 c_1+54\right ){}^2}+54}}\right \},\left \{y(x)\to \frac {c_1}{3 \left (a^2-1\right )}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-18 x^2 c_1 a^6+54 x^2 c_1 a^4+54 a^4-54 x^2 c_1 a^2-108 a^2+2 c_1^3+18 x^2 c_1+\sqrt {4 \left (-3 x^2 a^6+9 x^2 a^4-9 x^2 a^2+3 x^2-c_1^2\right ){}^3+\left (-18 x^2 c_1 a^6+54 x^2 c_1 a^4+54 a^4-54 x^2 c_1 a^2-108 a^2+2 c_1^3+18 x^2 c_1+54\right ){}^2}+54}}{6 \sqrt [3]{2} \left (a^2-1\right )}+\frac {\left (1-i \sqrt {3}\right ) \left (-3 x^2 a^6+9 x^2 a^4-9 x^2 a^2+3 x^2-c_1^2\right )}{3\ 2^{2/3} \left (a^2-1\right ) \sqrt [3]{-18 x^2 c_1 a^6+54 x^2 c_1 a^4+54 a^4-54 x^2 c_1 a^2-108 a^2+2 c_1^3+18 x^2 c_1+\sqrt {4 \left (-3 x^2 a^6+9 x^2 a^4-9 x^2 a^2+3 x^2-c_1^2\right ){}^3+\left (-18 x^2 c_1 a^6+54 x^2 c_1 a^4+54 a^4-54 x^2 c_1 a^2-108 a^2+2 c_1^3+18 x^2 c_1+54\right ){}^2}+54}}\right \}\right \}\] ✓ Maple : cpu = 0.465 (sec), leaf count = 1742
\[ \left \{ y \left ( x \right ) ={\frac {{9}^{{\frac {2}{3}}}}{27\,{a}^{2}-27} \left ( \left ( -{\it \_C1}\,{a}^{2}+{\it \_C1} \right ) \sqrt [3]{9}\sqrt [3]{ \left ( a+1 \right ) ^{2} \left ( a-1 \right ) ^{2} \left ( {\frac {1}{3}\sqrt {-3\, \left ( a-1 \right ) ^{5} \left ( a+1 \right ) ^{5}{x}^{6}+6\,{{\it \_C1}}^{2} \left ( a-1 \right ) ^{4} \left ( a+1 \right ) ^{4}{x}^{4}-3\,{\it \_C1}\, \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2} \left ( {{\it \_C1}}^{3}{a}^{2}-{{\it \_C1}}^{3}-18 \right ) {x}^{2}-6\,{{\it \_C1}}^{3}{a}^{2}+6\,{{\it \_C1}}^{3}+81}}+3+ \left ( -{\frac {{a}^{2}}{9}}+{\frac {1}{9}} \right ) {{\it \_C1}}^{3}+{x}^{2} \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2}{\it \_C1} \right ) }+3\,{a}^{6}{x}^{2}+ \left ( {{\it \_C1}}^{2}-9\,{x}^{2} \right ) {a}^{4}+ \left ( -2\,{{\it \_C1}}^{2}+9\,{x}^{2} \right ) {a}^{2}+ \left ( \left ( 9\,{x}^{2}{\it \_C1}\,{a}^{4}-{{\it \_C1}}^{3}{a}^{2}-18\,{\it \_C1}\,{a}^{2}{x}^{2}+{{\it \_C1}}^{3}+9\,{\it \_C1}\,{x}^{2}+3\,\sqrt {-3\, \left ( a-1 \right ) ^{5} \left ( a+1 \right ) ^{5}{x}^{6}+6\,{{\it \_C1}}^{2} \left ( a-1 \right ) ^{4} \left ( a+1 \right ) ^{4}{x}^{4}-3\,{\it \_C1}\, \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2} \left ( {{\it \_C1}}^{3}{a}^{2}-{{\it \_C1}}^{3}-18 \right ) {x}^{2}-6\,{{\it \_C1}}^{3}{a}^{2}+6\,{{\it \_C1}}^{3}+81}+27 \right ) \left ( {a}^{2}-1 \right ) ^{2} \right ) ^{{\frac {2}{3}}}-3\,{x}^{2}+{{\it \_C1}}^{2} \right ) {\frac {1}{\sqrt [3]{ \left ( a+1 \right ) ^{2} \left ( a-1 \right ) ^{2} \left ( {\frac {1}{3}\sqrt {-3\, \left ( a-1 \right ) ^{5} \left ( a+1 \right ) ^{5}{x}^{6}+6\,{{\it \_C1}}^{2} \left ( a-1 \right ) ^{4} \left ( a+1 \right ) ^{4}{x}^{4}-3\,{\it \_C1}\, \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2} \left ( {{\it \_C1}}^{3}{a}^{2}-{{\it \_C1}}^{3}-18 \right ) {x}^{2}-6\,{{\it \_C1}}^{3}{a}^{2}+6\,{{\it \_C1}}^{3}+81}}+3+ \left ( -{\frac {{a}^{2}}{9}}+{\frac {1}{9}} \right ) {{\it \_C1}}^{3}+{x}^{2} \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2}{\it \_C1} \right ) }}}},y \left ( x \right ) ={\frac {{9}^{{\frac {2}{3}}}}{54\,{a}^{2}-54} \left ( \left ( -2\,{\it \_C1}\,{a}^{2}+2\,{\it \_C1} \right ) \sqrt [3]{9}\sqrt [3]{ \left ( a+1 \right ) ^{2} \left ( a-1 \right ) ^{2} \left ( {\frac {1}{3}\sqrt {-3\, \left ( a-1 \right ) ^{5} \left ( a+1 \right ) ^{5}{x}^{6}+6\,{{\it \_C1}}^{2} \left ( a-1 \right ) ^{4} \left ( a+1 \right ) ^{4}{x}^{4}-3\,{\it \_C1}\, \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2} \left ( {{\it \_C1}}^{3}{a}^{2}-{{\it \_C1}}^{3}-18 \right ) {x}^{2}-6\,{{\it \_C1}}^{3}{a}^{2}+6\,{{\it \_C1}}^{3}+81}}+3+ \left ( -{\frac {{a}^{2}}{9}}+{\frac {1}{9}} \right ) {{\it \_C1}}^{3}+{x}^{2} \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2}{\it \_C1} \right ) }+ \left ( -3\,i{a}^{6}{x}^{2}+ \left ( 9\,i{x}^{2}-i{{\it \_C1}}^{2} \right ) {a}^{4}+ \left ( -9\,i{x}^{2}+2\,i{{\it \_C1}}^{2} \right ) {a}^{2}+i \left ( \left ( 9\,{x}^{2}{\it \_C1}\,{a}^{4}-{{\it \_C1}}^{3}{a}^{2}-18\,{\it \_C1}\,{a}^{2}{x}^{2}+{{\it \_C1}}^{3}+9\,{\it \_C1}\,{x}^{2}+3\,\sqrt {-3\, \left ( a-1 \right ) ^{5} \left ( a+1 \right ) ^{5}{x}^{6}+6\,{{\it \_C1}}^{2} \left ( a-1 \right ) ^{4} \left ( a+1 \right ) ^{4}{x}^{4}-3\,{\it \_C1}\, \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2} \left ( {{\it \_C1}}^{3}{a}^{2}-{{\it \_C1}}^{3}-18 \right ) {x}^{2}-6\,{{\it \_C1}}^{3}{a}^{2}+6\,{{\it \_C1}}^{3}+81}+27 \right ) \left ( {a}^{2}-1 \right ) ^{2} \right ) ^{{\frac {2}{3}}}+3\,i{x}^{2}-i{{\it \_C1}}^{2} \right ) \sqrt {3}-3\,{a}^{6}{x}^{2}+ \left ( -{{\it \_C1}}^{2}+9\,{x}^{2} \right ) {a}^{4}+ \left ( 2\,{{\it \_C1}}^{2}-9\,{x}^{2} \right ) {a}^{2}- \left ( \left ( 9\,{x}^{2}{\it \_C1}\,{a}^{4}-{{\it \_C1}}^{3}{a}^{2}-18\,{\it \_C1}\,{a}^{2}{x}^{2}+{{\it \_C1}}^{3}+9\,{\it \_C1}\,{x}^{2}+3\,\sqrt {-3\, \left ( a-1 \right ) ^{5} \left ( a+1 \right ) ^{5}{x}^{6}+6\,{{\it \_C1}}^{2} \left ( a-1 \right ) ^{4} \left ( a+1 \right ) ^{4}{x}^{4}-3\,{\it \_C1}\, \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2} \left ( {{\it \_C1}}^{3}{a}^{2}-{{\it \_C1}}^{3}-18 \right ) {x}^{2}-6\,{{\it \_C1}}^{3}{a}^{2}+6\,{{\it \_C1}}^{3}+81}+27 \right ) \left ( {a}^{2}-1 \right ) ^{2} \right ) ^{{\frac {2}{3}}}+3\,{x}^{2}-{{\it \_C1}}^{2} \right ) {\frac {1}{\sqrt [3]{ \left ( a+1 \right ) ^{2} \left ( a-1 \right ) ^{2} \left ( {\frac {1}{3}\sqrt {-3\, \left ( a-1 \right ) ^{5} \left ( a+1 \right ) ^{5}{x}^{6}+6\,{{\it \_C1}}^{2} \left ( a-1 \right ) ^{4} \left ( a+1 \right ) ^{4}{x}^{4}-3\,{\it \_C1}\, \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2} \left ( {{\it \_C1}}^{3}{a}^{2}-{{\it \_C1}}^{3}-18 \right ) {x}^{2}-6\,{{\it \_C1}}^{3}{a}^{2}+6\,{{\it \_C1}}^{3}+81}}+3+ \left ( -{\frac {{a}^{2}}{9}}+{\frac {1}{9}} \right ) {{\it \_C1}}^{3}+{x}^{2} \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2}{\it \_C1} \right ) }}}},y \left ( x \right ) =-{\frac {{9}^{{\frac {2}{3}}}}{54\,{a}^{2}-54} \left ( \left ( 2\,{\it \_C1}\,{a}^{2}-2\,{\it \_C1} \right ) \sqrt [3]{9}\sqrt [3]{ \left ( a+1 \right ) ^{2} \left ( a-1 \right ) ^{2} \left ( {\frac {1}{3}\sqrt {-3\, \left ( a-1 \right ) ^{5} \left ( a+1 \right ) ^{5}{x}^{6}+6\,{{\it \_C1}}^{2} \left ( a-1 \right ) ^{4} \left ( a+1 \right ) ^{4}{x}^{4}-3\,{\it \_C1}\, \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2} \left ( {{\it \_C1}}^{3}{a}^{2}-{{\it \_C1}}^{3}-18 \right ) {x}^{2}-6\,{{\it \_C1}}^{3}{a}^{2}+6\,{{\it \_C1}}^{3}+81}}+3+ \left ( -{\frac {{a}^{2}}{9}}+{\frac {1}{9}} \right ) {{\it \_C1}}^{3}+{x}^{2} \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2}{\it \_C1} \right ) }+ \left ( -3\,i{a}^{6}{x}^{2}+ \left ( 9\,i{x}^{2}-i{{\it \_C1}}^{2} \right ) {a}^{4}+ \left ( -9\,i{x}^{2}+2\,i{{\it \_C1}}^{2} \right ) {a}^{2}+i \left ( \left ( 9\,{x}^{2}{\it \_C1}\,{a}^{4}-{{\it \_C1}}^{3}{a}^{2}-18\,{\it \_C1}\,{a}^{2}{x}^{2}+{{\it \_C1}}^{3}+9\,{\it \_C1}\,{x}^{2}+3\,\sqrt {-3\, \left ( a-1 \right ) ^{5} \left ( a+1 \right ) ^{5}{x}^{6}+6\,{{\it \_C1}}^{2} \left ( a-1 \right ) ^{4} \left ( a+1 \right ) ^{4}{x}^{4}-3\,{\it \_C1}\, \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2} \left ( {{\it \_C1}}^{3}{a}^{2}-{{\it \_C1}}^{3}-18 \right ) {x}^{2}-6\,{{\it \_C1}}^{3}{a}^{2}+6\,{{\it \_C1}}^{3}+81}+27 \right ) \left ( {a}^{2}-1 \right ) ^{2} \right ) ^{{\frac {2}{3}}}+3\,i{x}^{2}-i{{\it \_C1}}^{2} \right ) \sqrt {3}+3\,{a}^{6}{x}^{2}+ \left ( {{\it \_C1}}^{2}-9\,{x}^{2} \right ) {a}^{4}+ \left ( -2\,{{\it \_C1}}^{2}+9\,{x}^{2} \right ) {a}^{2}+ \left ( \left ( 9\,{x}^{2}{\it \_C1}\,{a}^{4}-{{\it \_C1}}^{3}{a}^{2}-18\,{\it \_C1}\,{a}^{2}{x}^{2}+{{\it \_C1}}^{3}+9\,{\it \_C1}\,{x}^{2}+3\,\sqrt {-3\, \left ( a-1 \right ) ^{5} \left ( a+1 \right ) ^{5}{x}^{6}+6\,{{\it \_C1}}^{2} \left ( a-1 \right ) ^{4} \left ( a+1 \right ) ^{4}{x}^{4}-3\,{\it \_C1}\, \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2} \left ( {{\it \_C1}}^{3}{a}^{2}-{{\it \_C1}}^{3}-18 \right ) {x}^{2}-6\,{{\it \_C1}}^{3}{a}^{2}+6\,{{\it \_C1}}^{3}+81}+27 \right ) \left ( {a}^{2}-1 \right ) ^{2} \right ) ^{{\frac {2}{3}}}-3\,{x}^{2}+{{\it \_C1}}^{2} \right ) {\frac {1}{\sqrt [3]{ \left ( a+1 \right ) ^{2} \left ( a-1 \right ) ^{2} \left ( {\frac {1}{3}\sqrt {-3\, \left ( a-1 \right ) ^{5} \left ( a+1 \right ) ^{5}{x}^{6}+6\,{{\it \_C1}}^{2} \left ( a-1 \right ) ^{4} \left ( a+1 \right ) ^{4}{x}^{4}-3\,{\it \_C1}\, \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2} \left ( {{\it \_C1}}^{3}{a}^{2}-{{\it \_C1}}^{3}-18 \right ) {x}^{2}-6\,{{\it \_C1}}^{3}{a}^{2}+6\,{{\it \_C1}}^{3}+81}}+3+ \left ( -{\frac {{a}^{2}}{9}}+{\frac {1}{9}} \right ) {{\it \_C1}}^{3}+{x}^{2} \left ( a-1 \right ) ^{2} \left ( a+1 \right ) ^{2}{\it \_C1} \right ) }}}} \right \} \]