\[ y'(x)=e^{-2 b x} y(x) \left (e^{b x} y(x)+e^{2 b x}+y(x)^2\right ) \] ✓ Mathematica : cpu = 0.230204 (sec), leaf count = 146
\[\text {Solve}\left [-\frac {1}{3} (9 b-7)^{2/3} \text {RootSum}\left [\text {$\#$1}^3 (9 b-7)^{2/3}-9 \text {$\#$1} b+6 \text {$\#$1}+(9 b-7)^{2/3}\& ,\frac {\log \left (\frac {3 e^{-2 b x} y(x)+e^{-b x}}{\sqrt [3]{(9 b-7) e^{-3 b x}}}-\text {$\#$1}\right )}{\text {$\#$1}^2 \left (-(9 b-7)^{2/3}\right )+3 b-2}\& \right ]=\frac {1}{9} x e^{2 b x} \left ((9 b-7) e^{-3 b x}\right )^{2/3}+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.509 (sec), leaf count = 134
\[ \left \{ y \left ( x \right ) =-{\frac {{{\rm e}^{bx}}}{2}}-{\frac {1}{2}\tan \left ( {\it RootOf} \left ( 2\,{\it \_Z}\,{{\rm e}^{bx}}-\sqrt {- \left ( {{\rm e}^{bx}} \right ) ^{2} \left ( 4\,b-3 \right ) }\ln \left ( {(4\, \left ( \tan \left ( {\it \_Z} \right ) \right ) ^{2}b-3\, \left ( \tan \left ( {\it \_Z} \right ) \right ) ^{2}+4\,b-3) \left ( \tan \left ( {\it \_Z} \right ) \sqrt {- \left ( {{\rm e}^{bx}} \right ) ^{2} \left ( 4\,b-3 \right ) }+{{\rm e}^{bx}} \right ) ^{-2}} \right ) +{\it \_C1}\,\sqrt {- \left ( {{\rm e}^{bx}} \right ) ^{2} \left ( 4\,b-3 \right ) }-2\,x\sqrt {- \left ( {{\rm e}^{bx}} \right ) ^{2} \left ( 4\,b-3 \right ) } \right ) \right ) \sqrt { \left ( -4\,b+3 \right ) \left ( {{\rm e}^{bx}} \right ) ^{2}}} \right \} \]