[next] [prev] [prev-tail] [tail] [up]
(a2x3+a)y(x)+(2ax3−1)y′(x)+xy″(x)=0 ✗ Mathematica : cpu = 1.06041 (sec), leaf count = 0 , DifferentialRoot result
\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{\left (a^2 \unicode {f817}^3+a\right ) \unicode {f818}(\unicode {f817})+\left (2 \unicode {f817}^3 a-1\right ) \unicode {f818}'(\unicode {f817})+\unicode {f817} \unicode {f818}''(\unicode {f817})=0,\unicode {f818}(1)=c_1,\unicode {f818}'(1)=c_2\right \}\right )(x)\right \}\right \}\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{\left (a^2 \unicode {f817}^3+a\right ) \unicode {f818}(\unicode {f817})+\left (2 \unicode {f817}^3 a-1\right ) \unicode {f818}'(\unicode {f817})+\unicode {f817} \unicode {f818}''(\unicode {f817})=0,\unicode {f818}(1)=c_1,\unicode {f818}'(1)=c_2\right \}\right )(x)\right \}\right \}
✓ Maple : cpu = 0.055 (sec), leaf count = 19
{y(x)=e−ax33(_C2x2+_C1)}
[next] [prev] [prev-tail] [front] [up]