\[ x^2 y''(x)+\frac {y(x)}{\log (x)}-e^x x (x \log (x)+2)=0 \] ✗ Mathematica : cpu = 0.227286 (sec), leaf count = 0 , could not solve
DSolve[-(E^x*x*(2 + x*Log[x])) + y[x]/Log[x] + x^2*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 0.221 (sec), leaf count = 71
\[ \left \{ y \left ( x \right ) =\ln \left ( x \right ) {\it \_C2}- \left ( {\it Ei} \left ( 1,-\ln \left ( x \right ) \right ) \ln \left ( x \right ) +x \right ) {\it \_C1}- \left ( -\int \!{\frac { \left ( {\it Ei} \left ( 1,-\ln \left ( x \right ) \right ) \ln \left ( x \right ) +x \right ) {{\rm e}^{x}} \left ( 2+x\ln \left ( x \right ) \right ) }{x}}\,{\rm d}x+{{\rm e}^{x}}\ln \left ( x \right ) \left ( {\it Ei} \left ( 1,-\ln \left ( x \right ) \right ) \ln \left ( x \right ) +x \right ) \right ) \ln \left ( x \right ) \right \} \]