\[ \left (a x^2+b\right ) y'(x)+c x y(x)+x \left (x^2-1\right ) y''(x)=0 \] ✓ Mathematica : cpu = 0.302886 (sec), leaf count = 146
\[\left \{\left \{y(x)\to c_1 \, _2F_1\left (\frac {1}{4} \left (a-\sqrt {a^2-2 a-4 c+1}-1\right ),\frac {1}{4} \left (a+\sqrt {a^2-2 a-4 c+1}-1\right );\frac {1-b}{2};x^2\right )+i^{b+1} c_2 x^{b+1} \, _2F_1\left (\frac {1}{4} \left (a+2 b-\sqrt {a^2-2 a-4 c+1}+1\right ),\frac {1}{4} \left (a+2 b+\sqrt {a^2-2 a-4 c+1}+1\right );\frac {b+3}{2};x^2\right )\right \}\right \}\]
✓ Maple : cpu = 0.282 (sec), leaf count = 122
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\mbox {$_2$F$_1$}(-{\frac {1}{4}}+{\frac {a}{4}}+{\frac {1}{4}\sqrt {{a}^{2}-2\,a-4\,c+1}},-{\frac {1}{4}}+{\frac {a}{4}}-{\frac {1}{4}\sqrt {{a}^{2}-2\,a-4\,c+1}};\,-{\frac {b}{2}}+{\frac {1}{2}};\,{x}^{2})}+{\it \_C2}\,{x}^{b+1}{\mbox {$_2$F$_1$}({\frac {1}{4}}+{\frac {a}{4}}+{\frac {b}{2}}+{\frac {1}{4}\sqrt {{a}^{2}-2\,a-4\,c+1}},{\frac {1}{4}}+{\frac {a}{4}}+{\frac {b}{2}}-{\frac {1}{4}\sqrt {{a}^{2}-2\,a-4\,c+1}};\,{\frac {3}{2}}+{\frac {b}{2}};\,{x}^{2})} \right \} \]