\[ y''(x)=-\frac {y(x) \left (b x^2+c x+d\right )}{a (x-1)^2 x^2} \] ✓ Mathematica : cpu = 22.3544 (sec), leaf count = 413606
\[\text {Too large to show}\]
✓ Maple : cpu = 0.281 (sec), leaf count = 299
\[ \left \{ y \left ( x \right ) ={\it \_C1}\, \left ( x-1 \right ) ^{{\frac {1}{2} \left ( \sqrt {a}-\sqrt {a-4\,b-4\,c-4\,d} \right ) {\frac {1}{\sqrt {a}}}}}{x}^{{\frac {1}{2} \left ( \sqrt {a-4\,d}+\sqrt {a} \right ) {\frac {1}{\sqrt {a}}}}}{\mbox {$_2$F$_1$}({\frac {1}{2} \left ( -\sqrt {a-4\,b-4\,c-4\,d}+\sqrt {a}+\sqrt {a-4\,d}-\sqrt {a-4\,b} \right ) {\frac {1}{\sqrt {a}}}},{\frac {1}{2} \left ( -\sqrt {a-4\,b-4\,c-4\,d}+\sqrt {a}+\sqrt {a-4\,d}+\sqrt {a-4\,b} \right ) {\frac {1}{\sqrt {a}}}};\,{1 \left ( \sqrt {a-4\,d}+\sqrt {a} \right ) {\frac {1}{\sqrt {a}}}};\,x)}+{\it \_C2}\,{x}^{-{\frac {1}{2} \left ( -\sqrt {a}+\sqrt {a-4\,d} \right ) {\frac {1}{\sqrt {a}}}}}{\mbox {$_2$F$_1$}(-{\frac {1}{2} \left ( \sqrt {a-4\,b-4\,c-4\,d}-\sqrt {a}+\sqrt {a-4\,d}+\sqrt {a-4\,b} \right ) {\frac {1}{\sqrt {a}}}},-{\frac {1}{2} \left ( \sqrt {a-4\,b-4\,c-4\,d}-\sqrt {a}+\sqrt {a-4\,d}-\sqrt {a-4\,b} \right ) {\frac {1}{\sqrt {a}}}};\,{1 \left ( \sqrt {a}-\sqrt {a-4\,d} \right ) {\frac {1}{\sqrt {a}}}};\,x)} \left ( x-1 \right ) ^{-{\frac {1}{2} \left ( -\sqrt {a}+\sqrt {a-4\,b-4\,c-4\,d} \right ) {\frac {1}{\sqrt {a}}}}} \right \} \]