[next] [prev] [prev-tail] [tail] [up]
6y′(x)(ak+bx)+3(2ax+k)y″(x)+y(x)(3bk+2cx)+2xy(3)(x)=0 ✗ Mathematica : cpu = 63.3421 (sec), leaf count = 0 , DifferentialRoot result
\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{(2 \unicode {f817} c+3 b k) \unicode {f818}(\unicode {f817})+(6 \unicode {f817} b+6 a k) \unicode {f818}'(\unicode {f817})+(6 \unicode {f817} a+3 k) \unicode {f818}''(\unicode {f817})+2 \unicode {f817} \unicode {f818}^{(3)}(\unicode {f817})=0,\unicode {f818}(1)=c_1,\unicode {f818}'(1)=c_2,\unicode {f818}''(1)=c_3\right \}\right )(x)\right \}\right \}\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{(2 \unicode {f817} c+3 b k) \unicode {f818}(\unicode {f817})+(6 \unicode {f817} b+6 a k) \unicode {f818}'(\unicode {f817})+(6 \unicode {f817} a+3 k) \unicode {f818}''(\unicode {f817})+2 \unicode {f817} \unicode {f818}^{(3)}(\unicode {f817})=0,\unicode {f818}(1)=c_1,\unicode {f818}'(1)=c_2,\unicode {f818}''(1)=c_3\right \}\right )(x)\right \}\right \}
✗ Maple : cpu = 0. (sec), leaf count = 0 , result contains DESol
{y(x)=DESol({(3bk+2cx)_Y(x)+(6ak+6bx)ddx_Y(x)+(6ax+3k)d2dx2_Y(x)+2xd3dx3_Y(x)},{_Y(x)})}
[next] [prev] [prev-tail] [front] [up]