\[ y''(x)-\frac {h\left (\frac {y(x)}{\sqrt {x}}\right )}{x^{3/2}}=0 \] ✗ Mathematica : cpu = 300.161 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.31 (sec), leaf count = 92
\[ \left \{ y \left ( x \right ) ={\it RootOf} \left ( -\ln \left ( x \right ) -2\,\int ^{{\it \_Z}}\!{\frac {1}{\sqrt {{\it \_C1}+8\,\int \!h \left ( {\it \_g} \right ) \,{\rm d}{\it \_g}+{{\it \_g}}^{2}}}}{d{\it \_g}}+2\,{\it \_C2} \right ) \sqrt {x},y \left ( x \right ) ={\it RootOf} \left ( -\ln \left ( x \right ) +2\,\int ^{{\it \_Z}}\!{\frac {1}{\sqrt {{\it \_C1}+8\,\int \!h \left ( {\it \_g} \right ) \,{\rm d}{\it \_g}+{{\it \_g}}^{2}}}}{d{\it \_g}}+2\,{\it \_C2} \right ) \sqrt {x},y \left ( x \right ) ={\it RootOf} \left ( {\it \_Z}\,{x}^{{\frac {3}{2}}}+4\,h \left ( {\frac {{\it \_Z}}{\sqrt {x}}} \right ) {x}^{2} \right ) \right \} \]