\[ k (-a+y(x)+x) (-b+y(x)+x)+(x-a) (x-b) y'(x)+y(x)^2=0 \] ✓ Mathematica : cpu = 0.273015 (sec), leaf count = 99
\[\left \{\left \{y(x)\to \frac {1}{2} \left (\sqrt {-\frac {k^2 (a-b)^2}{(k+1)^2}} \tan \left (\frac {(k+1) \sqrt {-\frac {k^2 (a-b)^2}{(k+1)^2}} (\log (x-b)-\log (x-a))}{2 (a-b)}+c_1\right )+\frac {k (a+b-2 x)}{k+1}\right )\right \}\right \}\]
✓ Maple : cpu = 0.201 (sec), leaf count = 58
\[ \left \{ y \left ( x \right ) ={\frac {k \left ( {\it \_C1}\, \left ( a-x \right ) \left ( a-x \right ) ^{k}+ \left ( b-x \right ) ^{k} \left ( b-x \right ) \right ) }{ \left ( k+1 \right ) \left ( {\it \_C1}\, \left ( a-x \right ) ^{k}+ \left ( b-x \right ) ^{k} \right ) }} \right \} \]