\[ -y(x) (y(x)+1) \left (b^2 y(x)^2-a^2\right )+(a y(x)-1) y'(x)+y(x) y''(x)-y'(x)^2=0 \] ✗ Mathematica : cpu = 117.349 (sec), leaf count = 0 , could not solve
DSolve[-(y[x]*(1 + y[x])*(-a^2 + b^2*y[x]^2)) + (-1 + a*y[x])*Derivative[1][y][x] - Derivative[1][y][x]^2 + y[x]*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 2.572 (sec), leaf count = 91
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {\it \_a},[ \left \{ \left ( {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) \right ) {\it \_b} \left ( {\it \_a} \right ) -{\frac {{{\it \_a}}^{4}{b}^{2}+{b}^{2}{{\it \_a}}^{3}-{{\it \_a}}^{2}{a}^{2}-{\it \_a}\,{\it \_b} \left ( {\it \_a} \right ) a-{\it \_a}\,{a}^{2}+ \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2}+{\it \_b} \left ( {\it \_a} \right ) }{{\it \_a}}}=0 \right \} , \left \{ {\it \_a}=y \left ( x \right ) ,{\it \_b} \left ( {\it \_a} \right ) ={\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right \} , \left \{ x=\int \! \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{-1}\,{\rm d}{\it \_a}+{\it \_C1},y \left ( x \right ) ={\it \_a} \right \} ] \right ) \right \} \]