\[ a y(x)^3+b y(x)^2+c y(x)+4 y(x) y''(x)-3 y'(x)^2=0 \] ✓ Mathematica : cpu = 5.27449 (sec), leaf count = 2281
\[\left \{\text {Solve}\left [-\frac {4 F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\sqrt {y(x)}\right )}{\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\sqrt {y(x)}\right )}}\right )|\frac {\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,3\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right )}{\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,3\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right )}\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\sqrt {y(x)}\right ){}^2 \sqrt {\frac {\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,3\right ]-\sqrt {y(x)}\right )}{\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,3\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\sqrt {y(x)}\right )}} \sqrt {\frac {\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\sqrt {y(x)}\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]-\sqrt {y(x)}\right )}{\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right ){}^2 \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\sqrt {y(x)}\right ){}^2}} \sqrt {y(x)}}{\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right ) \sqrt {-\frac {1}{3} a y(x)^3-b y(x)^2+c_1 y(x)^{3/2}+c y(x)}}=x+c_2,y(x)\right ],\text {Solve}\left [\frac {4 F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\sqrt {y(x)}\right )}{\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\sqrt {y(x)}\right )}}\right )|\frac {\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,3\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right )}{\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,3\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right )}\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\sqrt {y(x)}\right ){}^2 \sqrt {\frac {\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,3\right ]-\sqrt {y(x)}\right )}{\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,3\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\sqrt {y(x)}\right )}} \sqrt {\frac {\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\sqrt {y(x)}\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]-\sqrt {y(x)}\right )}{\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right ){}^2 \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\sqrt {y(x)}\right ){}^2}} \sqrt {y(x)}}{\left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,1\right ]\right ) \left (\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,2\right ]-\text {Root}\left [a \text {$\#$1}^4+3 b \text {$\#$1}^2-3 c_1 \text {$\#$1}-3 c\& ,4\right ]\right ) \sqrt {-\frac {1}{3} a y(x)^3-b y(x)^2+c_1 y(x)^{3/2}+c y(x)}}=x+c_2,y(x)\right ]\right \}\]
✓ Maple : cpu = 0.467 (sec), leaf count = 87
\[ \left \{ \int ^{y \left ( x \right ) }\!-3\,{\frac {1}{\sqrt {9\,{\it \_C1}\,{{\it \_a}}^{3/2}-3\,{{\it \_a}}^{3}a-9\,{{\it \_a}}^{2}b+9\,{\it \_a}\,c}}}{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!3\,{\frac {1}{\sqrt {9\,{\it \_C1}\,{{\it \_a}}^{3/2}-3\,{{\it \_a}}^{3}a-9\,{{\it \_a}}^{2}b+9\,{\it \_a}\,c}}}{d{\it \_a}}-x-{\it \_C2}=0,y \left ( x \right ) =0 \right \} \]