\[ a y(x) y'(x)+b x y(x)^3+x y(x) y''(x)-x y'(x)^2=0 \] ✗ Mathematica : cpu = 55.3361 (sec), leaf count = 0 , could not solve
DSolve[b*x*y[x]^3 + a*y[x]*Derivative[1][y][x] - x*Derivative[1][y][x]^2 + x*y[x]*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 0.926 (sec), leaf count = 108
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {\frac {{\it \_a}}{ \left ( {{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}} \right ) ^{2}}},[ \left \{ {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) =-2\,{\frac { \left ( 1/2+{{\it \_a}}^{2} \left ( -1/2\,b{\it \_a}+a-1 \right ) \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2}-1/2\,{\it \_a}\, \left ( a-1 \right ) {\it \_b} \left ( {\it \_a} \right ) \right ) {\it \_b} \left ( {\it \_a} \right ) }{{\it \_a}}} \right \} , \left \{ {\it \_a}={x}^{2}y \left ( x \right ) ,{\it \_b} \left ( {\it \_a} \right ) ={\frac {1}{{x}^{2} \left ( x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +2\,y \left ( x \right ) \right ) }} \right \} , \left \{ x={{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}},y \left ( x \right ) ={\frac {{\it \_a}}{ \left ( {{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}} \right ) ^{2}}} \right \} ] \right ) \right \} \]