\[ a h(y(x)) y'(x)^2+h(y(x)) y''(x)+j(y(x))=0 \] ✓ Mathematica : cpu = 13.1033 (sec), leaf count = 116
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}} -\frac {e^{a K[2]}}{\sqrt {2 \int _1^{K[2]} -\frac {e^{2 a K[1]} j(K[1])}{h(K[1])} \, dK[1]+c_1}} \, dK[2]\& \right ]\left [c_2+x\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}} \frac {e^{a K[3]}}{\sqrt {2 \int _1^{K[3]} -\frac {e^{2 a K[1]} j(K[1])}{h(K[1])} \, dK[1]+c_1}} \, dK[3]\& \right ]\left [c_2+x\right ]\right \}\right \}\]
✓ Maple : cpu = 0.262 (sec), leaf count = 87
\[ \left \{ \int ^{y \left ( x \right ) }\!{\frac {1}{ \left ( h \left ( {\it \_b} \right ) \right ) ^{-a}}{\frac {1}{\sqrt {-2\,\int \!{\frac { \left ( \left ( h \left ( {\it \_b} \right ) \right ) ^{a} \right ) ^{2}}{h \left ( {\it \_b} \right ) }}\,{\rm d}{\it \_b}+{\it \_C1}}}}}{d{\it \_b}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!-{\frac {1}{ \left ( h \left ( {\it \_b} \right ) \right ) ^{-a}}{\frac {1}{\sqrt {-2\,\int \!2\,{\frac { \left ( \left ( h \left ( {\it \_b} \right ) \right ) ^{a} \right ) ^{2}}{h \left ( {\it \_b} \right ) }}\,{\rm d}{\it \_b}+{\it \_C1}}}}}{d{\it \_b}}-x-{\it \_C2}=0 \right \} \]