\[ -a y(x)^n-b x^{(m+1) n}+x^{m (n-1)+n} y'(x)=0 \] ✓ Mathematica : cpu = 107.912 (sec), leaf count = 90
\[\text {Solve}\left [b x^{m+1} \log (x) \left (\frac {a x^{-(m+1) n}}{b}\right )^{\frac {1}{n}}+c_1=\int _1^{y(x) \left (\frac {a x^{-(m+1) n}}{b}\right )^{\frac {1}{n}}} \frac {1}{-K[1] \left (\frac {b^{1-n} (m+1)^n}{a}\right )^{\frac {1}{n}}+K[1]^n+1} \, dK[1],y(x)\right ]\]
✓ Maple : cpu = 0.319 (sec), leaf count = 60
\[ \left \{ \int _{{\it \_b}}^{y \left ( x \right ) }\!-{\frac {{x}^{mn}{x}^{n}}{ \left ( {x}^{m}xb- \left ( m+1 \right ) {\it \_a} \right ) {x}^{n}{x}^{mn}+{x}^{m}xa{{\it \_a}}^{n}}}\,{\rm d}{\it \_a}+\ln \left ( x \right ) -{\it \_C1}=0 \right \} \]