\[ (y(x)-2 x+1) y'(x)+y(x)+x=0 \] ✓ Mathematica : cpu = 0.142871 (sec), leaf count = 82
\[\text {Solve}\left [6 \sqrt {3} \tan ^{-1}\left (\frac {3 y(x)+1}{\sqrt {3} (-y(x)+2 x-1)}\right )=2 c_1+3 \log \left (\frac {3 x^2+3 y(x)^2-3 (x-1) y(x)-3 x+1}{(1-3 x)^2}\right )+6 \log (3 x-1),y(x)\right ]\]
✓ Maple : cpu = 0.212 (sec), leaf count = 51
\[ \left \{ y \left ( x \right ) ={\frac { \left ( -3\,x+1 \right ) \sqrt {3}}{6}\tan \left ( {\it RootOf} \left ( \sqrt {3}\ln \left ( {\frac { \left ( 3\, \left ( \tan \left ( {\it \_Z} \right ) \right ) ^{2}+3 \right ) \left ( 3\,x-1 \right ) ^{2}}{4}} \right ) +2\,\sqrt {3}{\it \_C1}+6\,{\it \_Z} \right ) \right ) }+{\frac {x}{2}}-{\frac {1}{2}} \right \} \]