\[ 2 x^3+\left (2 x^2 y(x)-x^3\right ) y'(x)-4 x y(x)^2+y(x)^3=0 \] ✓ Mathematica : cpu = 0.0684052 (sec), leaf count = 101
\[\left \{\left \{y(x)\to \frac {2 x^3-\sqrt {e^{2 c_1} x^2 \left (e^{2 c_1}-3 x^2\right )}}{e^{2 c_1}+x^2}\right \},\left \{y(x)\to \frac {\sqrt {e^{2 c_1} x^2 \left (e^{2 c_1}-3 x^2\right )}+2 x^3}{e^{2 c_1}+x^2}\right \}\right \}\]
✓ Maple : cpu = 0.357 (sec), leaf count = 65
\[ \left \{ y \left ( x \right ) ={\frac {x}{{\it \_C1}\,{x}^{2}-1} \left ( 2\,{\it \_C1}\,{x}^{2}-\sqrt {3\,{\it \_C1}\,{x}^{2}+1} \right ) },y \left ( x \right ) ={\frac {x}{{\it \_C1}\,{x}^{2}-1} \left ( 2\,{\it \_C1}\,{x}^{2}+\sqrt {3\,{\it \_C1}\,{x}^{2}+1} \right ) } \right \} \]