\[ \left (y(x)^2+2 y(x)+x\right ) y'(x)+y(x)^2 (y(x)+x)^2+y(x) (y(x)+1)=0 \] ✓ Mathematica : cpu = 0.720059 (sec), leaf count = 106
\[\left \{\left \{y(x)\to -\frac {\sqrt {\left (c_1 x-x^2+1\right ){}^2+4 \left (x-c_1\right )}-c_1 x+x^2-1}{2 \left (x-c_1\right )}\right \},\left \{y(x)\to \frac {\sqrt {\left (c_1 x-x^2+1\right ){}^2+4 \left (x-c_1\right )}+c_1 x-x^2+1}{2 \left (x-c_1\right )}\right \}\right \}\]
✓ Maple : cpu = 0.186 (sec), leaf count = 116
\[ \left \{ y \left ( x \right ) ={\frac {1}{-2\,{\it \_C1}+4\,x} \left ( -2\,{x}^{2}+{\it \_C1}\,x+\sqrt {4\,{x}^{4}-4\,{\it \_C1}\,{x}^{3}+ \left ( {{\it \_C1}}^{2}-8 \right ) {x}^{2}+ \left ( 4\,{\it \_C1}+16 \right ) x-8\,{\it \_C1}+4}+2 \right ) },y \left ( x \right ) ={\frac {1}{2\,{\it \_C1}-4\,x} \left ( 2\,{x}^{2}-{\it \_C1}\,x+\sqrt {4\,{x}^{4}-4\,{\it \_C1}\,{x}^{3}+ \left ( {{\it \_C1}}^{2}-8 \right ) {x}^{2}+ \left ( 4\,{\it \_C1}+16 \right ) x-8\,{\it \_C1}+4}-2 \right ) } \right \} \]