\[ x^2+\left (y(x)^3-3 x\right ) y'(x)-3 y(x)=0 \] ✓ Mathematica : cpu = 0.100503 (sec), leaf count = 1211
\[\left \{\left \{y(x)\to -\frac {\sqrt {\frac {4 x^3+12 c_1+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}{\sqrt {6}}-\frac {1}{2} \sqrt {-\frac {12 \sqrt {6} x}{\sqrt {\frac {4 x^3+12 c_1+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}-\frac {2}{3} \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}-\frac {8 \left (x^3+3 c_1\right )}{3 \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}\right \},\left \{y(x)\to \frac {1}{2} \sqrt {-\frac {12 \sqrt {6} x}{\sqrt {\frac {4 x^3+12 c_1+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}-\frac {2}{3} \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}-\frac {8 \left (x^3+3 c_1\right )}{3 \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}-\frac {\sqrt {\frac {4 x^3+12 c_1+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}{\sqrt {6}}\right \},\left \{y(x)\to \frac {\sqrt {\frac {4 x^3+12 c_1+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}{\sqrt {6}}-\frac {1}{2} \sqrt {\frac {12 \sqrt {6} x}{\sqrt {\frac {4 x^3+12 c_1+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}-\frac {2}{3} \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}-\frac {8 \left (x^3+3 c_1\right )}{3 \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}\right \},\left \{y(x)\to \frac {\sqrt {\frac {4 x^3+12 c_1+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}{\sqrt {6}}+\frac {1}{2} \sqrt {\frac {12 \sqrt {6} x}{\sqrt {\frac {4 x^3+12 c_1+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}-\frac {2}{3} \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}-\frac {8 \left (x^3+3 c_1\right )}{3 \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}\right \}\right \}\]
✓ Maple : cpu = 0.027 (sec), leaf count = 21
\[ \left \{ {\frac {{x}^{3}}{3}}-3\,xy \left ( x \right ) +{\frac { \left ( y \left ( x \right ) \right ) ^{4}}{4}}+{\it \_C1}=0 \right \} \]