2.31   ODE No. 31

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)axn(y(x)2+1)=0 Mathematica : cpu = 0.13142 (sec), leaf count = 21

{{y(x)tan(axn+1n+1+c1)}}

Maple : cpu = 0.06 (sec), leaf count = 23

{y(x)=tan((xn+1+(n+1)_C1)an+1)}

Hand solution

yaxn(y2+1)=0y=axn+axny2(1)=P(x)+Q(x)y+R(x)y2

This is Ricatti first order non-linear ODE. P(x)=axn,Q(x)=0,R(x)=axn. But this is separable also. Hencey(y2+1)=axndy(y2+1)=axndx

Integratingarctan(y(x))=axn+1n+1+C Ory(x)=tan(axn+1n+1+C)

Verification

restart; 
eq:=diff(y(x),x)-a*x^n*(y(x)^2+1) = 0; 
sol:=tan(a*x^(n+1)/(n+1)+_C1); 
odetest(y(x)=sol,eq); 
0