\[ a x y'(x)-b x^2-c+y'(x)^2=0 \] ✓ Mathematica : cpu = 0.289062 (sec), leaf count = 186
\[\left \{\left \{y(x)\to \frac {1}{4} x \sqrt {x^2 \left (a^2+4 b\right )+4 c}+\frac {c \log \left (\sqrt {a^2+4 b} \sqrt {x^2 \left (a^2+4 b\right )+4 c}+a^2 x+4 b x\right )}{\sqrt {a^2+4 b}}-\frac {a x^2}{4}+c_1\right \},\left \{y(x)\to -\frac {1}{4} x \left (\sqrt {x^2 \left (a^2+4 b\right )+4 c}+a x\right )-\frac {c \log \left (\sqrt {a^2+4 b} \sqrt {x^2 \left (a^2+4 b\right )+4 c}+a^2 x+4 b x\right )}{\sqrt {a^2+4 b}}+c_1\right \}\right \}\]
✓ Maple : cpu = 0.04 (sec), leaf count = 146
\[ \left \{ y \left ( x \right ) =-{\frac {x}{4}\sqrt { \left ( {a}^{2}+4\,b \right ) {x}^{2}+4\,c}}-{c\ln \left ( \sqrt {{a}^{2}+4\,b}x+\sqrt { \left ( {a}^{2}+4\,b \right ) {x}^{2}+4\,c} \right ) {\frac {1}{\sqrt {{a}^{2}+4\,b}}}}-{\frac {a{x}^{2}}{4}}+{\it \_C1},y \left ( x \right ) ={\frac {x}{4}\sqrt { \left ( {a}^{2}+4\,b \right ) {x}^{2}+4\,c}}+{c\ln \left ( \sqrt {{a}^{2}+4\,b}x+\sqrt { \left ( {a}^{2}+4\,b \right ) {x}^{2}+4\,c} \right ) {\frac {1}{\sqrt {{a}^{2}+4\,b}}}}-{\frac {a{x}^{2}}{4}}+{\it \_C1} \right \} \]