\[ (a x+b) y'(x)-a y(x)+c+y'(x)^2=0 \] ✓ Mathematica : cpu = 2.16568 (sec), leaf count = 133
\[\left \{\left \{y(x)\to -\frac {2 \sqrt {-a^4 e^{2 c_1} (x+1)^2}+a^3 (-(2 x+1))+2 a^2 b x+a \left (b^2+e^{2 c_1}-4 c\right )}{4 a^2}\right \},\left \{y(x)\to \frac {2 \sqrt {-a^4 e^{2 c_1} (x+1)^2}+a^3 (2 x+1)-2 a^2 b x-a \left (b^2+e^{2 c_1}-4 c\right )}{4 a^2}\right \}\right \}\]
✓ Maple : cpu = 0.028 (sec), leaf count = 50
\[ \left \{ y \left ( x \right ) ={\frac {{{\it \_C1}}^{2}+ \left ( ax+b \right ) {\it \_C1}+c}{a}},y \left ( x \right ) ={\frac {-{a}^{2}{x}^{2}-2\,abx-{b}^{2}+4\,c}{4\,a}} \right \} \]