\[ -e^{-x^2} x+y'(x)+2 x y(x)=0 \] ✓ Mathematica : cpu = 0.0091461 (sec), leaf count = 24
\[\left \{\left \{y(x)\to \frac {1}{2} e^{-x^2} \left (2 c_1+x^2\right )\right \}\right \}\]
✓ Maple : cpu = 0.007 (sec), leaf count = 18
\[ \left \{ y \left ( x \right ) = \left ( {\frac {{x}^{2}}{2}}+{\it \_C1} \right ) {{\rm e}^{-{x}^{2}}} \right \} \]
\begin {equation} \frac {dy}{dx}+2xy\left ( x\right ) =e^{-x^{2}}x \tag {1} \end {equation}
Integrating factor \(\mu =e^{\int 2xdx}=e^{x^{2}}\). Hence (1) becomes
\begin {align*} \frac {d}{dx}\left ( e^{x^{2}}y\left ( x\right ) \right ) & =e^{x^{2}}e^{-x^{2}}x\\ \frac {d}{dx}\left ( e^{x^{2}}y\left ( x\right ) \right ) & =x \end {align*}
Integrating both sides
\begin {align*} e^{x^{2}}y\left ( x\right ) & =\frac {x^{2}}{2}+C\\ y\left ( x\right ) & =e^{-x^{2}}\left ( \frac {x^{2}}{2}+C\right ) \end {align*}