\[ a+x y'(x)^2-y(x) y'(x)=0 \] ✓ Mathematica : cpu = 0.411499 (sec), leaf count = 183
\[\left \{\left \{y(x)\to -\frac {-8 a^2-\sqrt {a \left (\sinh \left (2 c_1\right )+\cosh \left (2 c_1\right )\right ) \left ((-4 a+x-1) \sinh \left (\frac {c_1}{2}\right )+(4 a-x-1) \cosh \left (\frac {c_1}{2}\right )\right ){}^2}+2 a \sinh \left (c_1\right )+2 a \cosh \left (c_1\right )-2 a x}{-4 a+\sinh \left (c_1\right )+\cosh \left (c_1\right )}\right \},\left \{y(x)\to -\frac {-8 a^2+\sqrt {a \left (\sinh \left (2 c_1\right )+\cosh \left (2 c_1\right )\right ) \left ((-4 a+x-1) \sinh \left (\frac {c_1}{2}\right )+(4 a-x-1) \cosh \left (\frac {c_1}{2}\right )\right ){}^2}+2 a \sinh \left (c_1\right )+2 a \cosh \left (c_1\right )-2 a x}{-4 a+\sinh \left (c_1\right )+\cosh \left (c_1\right )}\right \}\right \}\]
✓ Maple : cpu = 0.056 (sec), leaf count = 35
\[ \left \{ y \left ( x \right ) ={\frac {x{{\it \_C1}}^{2}+a}{{\it \_C1}}},y \left ( x \right ) =-2\,\sqrt {ax},y \left ( x \right ) =2\,\sqrt {ax} \right \} \]