\[ x^2 y'(x)^2-4 x (y(x)+2) y'(x)+4 y(x) (y(x)+2)=0 \] ✓ Mathematica : cpu = 0.0959875 (sec), leaf count = 59
\[\left \{\left \{y(x)\to e^{-c_1} x \left (x-2 \sqrt {2} e^{\frac {c_1}{2}}\right )\right \},\left \{y(x)\to e^{c_1} x^2-2 \sqrt {2} e^{\frac {c_1}{2}} x\right \}\right \}\]
✓ Maple : cpu = 4.48 (sec), leaf count = 137
\[ \left \{ y \left ( x \right ) =-2,y \left ( x \right ) ={\frac {1}{{\it \_C1}} \left ( {x}^{2}-2\,\sqrt {2}\sqrt {{\it \_C1}\,{x}^{2}} \right ) },y \left ( x \right ) ={\frac {1}{{\it \_C1}} \left ( 2\,\sqrt {2}\sqrt {{\it \_C1}\,{x}^{2}}+{x}^{2} \right ) },y \left ( x \right ) ={\frac {x \left ( -8\,{{\it \_C1}}^{2}+{x}^{2} \right ) \left ( -2\,\sqrt {2}{\it \_C1}+x \right ) }{{{\it \_C1}}^{2} \left ( -4\,\sqrt {2}{\it \_C1}\,x+{x}^{2}+8\,{{\it \_C1}}^{2} \right ) }},y \left ( x \right ) ={\frac {x \left ( -8\,{{\it \_C1}}^{2}+{x}^{2} \right ) \left ( 2\,\sqrt {2}{\it \_C1}+x \right ) }{{{\it \_C1}}^{2} \left ( 4\,\sqrt {2}{\it \_C1}\,x+8\,{{\it \_C1}}^{2}+{x}^{2} \right ) }} \right \} \]