\[ a y(x) y'(x)^2+(2 x-b) y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.311782 (sec), leaf count = 136
\[\left \{\left \{y(x)\to -\frac {e^{\frac {c_1}{2}} \sqrt {2 b+e^{c_1}-4 x}}{2 \sqrt {a}}\right \},\left \{y(x)\to \frac {e^{\frac {c_1}{2}} \sqrt {2 b+e^{c_1}-4 x}}{2 \sqrt {a}}\right \},\left \{y(x)\to -e^{\frac {c_1}{2}} \sqrt {4 \left (a e^{c_1}+x\right )-2 b}\right \},\left \{y(x)\to e^{\frac {c_1}{2}} \sqrt {4 \left (a e^{c_1}+x\right )-2 b}\right \}\right \}\]
✓ Maple : cpu = 0.495 (sec), leaf count = 622
\[ \left \{ \int _{{\it \_b}}^{x}\!{1 \left ( -4\,{\it \_a}+2\,b-2\,\sqrt {4\,a \left ( y \left ( x \right ) \right ) ^{2}+ \left ( b-2\,{\it \_a} \right ) ^{2}} \right ) \left ( \left ( -b+2\,{\it \_a} \right ) \sqrt {4\,a \left ( y \left ( x \right ) \right ) ^{2}+ \left ( b-2\,{\it \_a} \right ) ^{2}}+4\,a \left ( y \left ( x \right ) \right ) ^{2}+ \left ( b-2\,{\it \_a} \right ) ^{2} \right ) ^{-1}}\,{\rm d}{\it \_a}+\int ^{y \left ( x \right ) }\!4\,{\frac {a{\it \_f}}{-4\,{{\it \_f}}^{2}a+\sqrt {4\,{{\it \_f}}^{2}a+{b}^{2}-4\,bx+4\,{x}^{2}}b-2\,\sqrt {4\,{{\it \_f}}^{2}a+{b}^{2}-4\,bx+4\,{x}^{2}}x-{b}^{2}+4\,bx-4\,{x}^{2}}}-\int _{{\it \_b}}^{x}\!{1 \left ( -32\,{\frac {{a}^{2}{{\it \_f}}^{3}}{\sqrt {4\,{{\it \_f}}^{2}a+4\,{{\it \_a}}^{2}-4\,b{\it \_a}+{b}^{2}}}}-16\,a{\it \_f}\, \left ( -2\,{\it \_a}+b-\sqrt {4\,{{\it \_f}}^{2}a+4\,{{\it \_a}}^{2}-4\,b{\it \_a}+{b}^{2}} \right ) \right ) \left ( 4\,{{\it \_f}}^{2}a+2\,\sqrt {4\,{{\it \_f}}^{2}a+4\,{{\it \_a}}^{2}-4\,b{\it \_a}+{b}^{2}}{\it \_a}-\sqrt {4\,{{\it \_f}}^{2}a+4\,{{\it \_a}}^{2}-4\,b{\it \_a}+{b}^{2}}b+4\,{{\it \_a}}^{2}-4\,b{\it \_a}+{b}^{2} \right ) ^{-2}}\,{\rm d}{\it \_a}{d{\it \_f}}+{\it \_C1}=0,\int _{{\it \_b}}^{x}\!{1 \left ( -4\,{\it \_a}+2\,b+2\,\sqrt {4\,a \left ( y \left ( x \right ) \right ) ^{2}+ \left ( b-2\,{\it \_a} \right ) ^{2}} \right ) \left ( \left ( b-2\,{\it \_a} \right ) \sqrt {4\,a \left ( y \left ( x \right ) \right ) ^{2}+ \left ( b-2\,{\it \_a} \right ) ^{2}}+4\,a \left ( y \left ( x \right ) \right ) ^{2}+ \left ( b-2\,{\it \_a} \right ) ^{2} \right ) ^{-1}}\,{\rm d}{\it \_a}+\int ^{y \left ( x \right ) }\!-4\,{\frac {a{\it \_f}}{4\,{{\it \_f}}^{2}a+\sqrt {4\,{{\it \_f}}^{2}a+{b}^{2}-4\,bx+4\,{x}^{2}}b-2\,\sqrt {4\,{{\it \_f}}^{2}a+{b}^{2}-4\,bx+4\,{x}^{2}}x+{b}^{2}-4\,bx+4\,{x}^{2}}}-\int _{{\it \_b}}^{x}\!{1 \left ( 32\,{\frac {{a}^{2}{{\it \_f}}^{3}}{\sqrt {4\,{{\it \_f}}^{2}a+4\,{{\it \_a}}^{2}-4\,b{\it \_a}+{b}^{2}}}}-16\,a{\it \_f}\, \left ( -2\,{\it \_a}+b+\sqrt {4\,{{\it \_f}}^{2}a+4\,{{\it \_a}}^{2}-4\,b{\it \_a}+{b}^{2}} \right ) \right ) \left ( 4\,{{\it \_f}}^{2}a+\sqrt {4\,{{\it \_f}}^{2}a+4\,{{\it \_a}}^{2}-4\,b{\it \_a}+{b}^{2}}b-2\,\sqrt {4\,{{\it \_f}}^{2}a+4\,{{\it \_a}}^{2}-4\,b{\it \_a}+{b}^{2}}{\it \_a}+{b}^{2}-4\,b{\it \_a}+4\,{{\it \_a}}^{2} \right ) ^{-2}}\,{\rm d}{\it \_a}{d{\it \_f}}+{\it \_C1}=0,y \left ( x \right ) =-{\frac {-2\,x+b}{2}{\frac {1}{\sqrt {-a}}}},y \left ( x \right ) ={\frac {-2\,x+b}{2}{\frac {1}{\sqrt {-a}}}} \right \} \]