\[ y'(x)^2 \left (a y(x)^2+b x+c\right )-b y(x) y'(x)+d y(x)^2=0 \] ✓ Mathematica : cpu = 32.3596 (sec), leaf count = 613
\[\left \{\text {Solve}\left [\left \{y(x)=\frac {b \text {K$\$$3265384}-\sqrt {\text {K$\$$3265384}^2 \left (-4 b x \left (a \text {K$\$$3265384}^2+d\right )-4 c \left (a \text {K$\$$3265384}^2+d\right )+b^2\right )}}{2 \left (a \text {K$\$$3265384}^2+d\right )},x=-\frac {d \left (b^2 c_1 d \left (a c_1 d \text {K$\$$3265384}^2-2 \sqrt {a \text {K$\$$3265384}^2+d}+c_1 d^2\right )+4 c \left (a \text {K$\$$3265384}^2+d\right )\right )+2 b^2 \sqrt {d} \left (a c_1 d \text {K$\$$3265384}^2-\sqrt {a \text {K$\$$3265384}^2+d}+c_1 d^2\right ) \log \left (\sqrt {d} \sqrt {a \text {K$\$$3265384}^2+d}+d\right )-2 b^2 \log (\text {K$\$$3265384}) \left (\sqrt {d} \left (a c_1 d \text {K$\$$3265384}^2-\sqrt {a \text {K$\$$3265384}^2+d}+c_1 d^2\right )+\left (a \text {K$\$$3265384}^2+d\right ) \log \left (\sqrt {d} \sqrt {a \text {K$\$$3265384}^2+d}+d\right )\right )+b^2 \log ^2(\text {K$\$$3265384}) \left (a \text {K$\$$3265384}^2+d\right )+b^2 \left (a \text {K$\$$3265384}^2+d\right ) \log ^2\left (\sqrt {d} \sqrt {a \text {K$\$$3265384}^2+d}+d\right )}{4 b d \left (a \text {K$\$$3265384}^2+d\right )}\right \},\{y(x),\text {K$\$$3265384}\}\right ],\text {Solve}\left [\left \{y(x)=\frac {\sqrt {\text {K$\$$3265394}^2 \left (-4 b x \left (a \text {K$\$$3265394}^2+d\right )-4 c \left (a \text {K$\$$3265394}^2+d\right )+b^2\right )}+b \text {K$\$$3265394}}{2 \left (a \text {K$\$$3265394}^2+d\right )},x=-\frac {d \left (b^2 c_1 d \left (a c_1 d \text {K$\$$3265394}^2-2 \sqrt {a \text {K$\$$3265394}^2+d}+c_1 d^2\right )+4 c \left (a \text {K$\$$3265394}^2+d\right )\right )+2 b^2 \sqrt {d} \left (a c_1 d \text {K$\$$3265394}^2-\sqrt {a \text {K$\$$3265394}^2+d}+c_1 d^2\right ) \log \left (\sqrt {d} \sqrt {a \text {K$\$$3265394}^2+d}+d\right )-2 b^2 \log (\text {K$\$$3265394}) \left (\sqrt {d} \left (a c_1 d \text {K$\$$3265394}^2-\sqrt {a \text {K$\$$3265394}^2+d}+c_1 d^2\right )+\left (a \text {K$\$$3265394}^2+d\right ) \log \left (\sqrt {d} \sqrt {a \text {K$\$$3265394}^2+d}+d\right )\right )+b^2 \log ^2(\text {K$\$$3265394}) \left (a \text {K$\$$3265394}^2+d\right )+b^2 \left (a \text {K$\$$3265394}^2+d\right ) \log ^2\left (\sqrt {d} \sqrt {a \text {K$\$$3265394}^2+d}+d\right )}{4 b d \left (a \text {K$\$$3265394}^2+d\right )}\right \},\{y(x),\text {K$\$$3265394}\}\right ]\right \}\]
✓ Maple : cpu = 4.406 (sec), leaf count = 215
\[ \left \{ [x \left ( {\it \_T} \right ) =-{\frac {1}{4\,bd} \left ( \left ( \ln \left ( {\frac {1}{{\it \_T}} \left ( \sqrt {d}\sqrt {{{\it \_T}}^{2}a+d}+d \right ) } \right ) \right ) ^{2}\sqrt {{{\it \_T}}^{2}a+d}{b}^{2}+ \left ( \left ( 2\,\ln \left ( 2 \right ) {b}^{2}+4\,\sqrt {d}{\it \_C1}\,b \right ) \sqrt {{{\it \_T}}^{2}a+d}-2\,\sqrt {d}{b}^{2} \right ) \ln \left ( {\frac {1}{{\it \_T}} \left ( \sqrt {d}\sqrt {{{\it \_T}}^{2}a+d}+d \right ) } \right ) + \left ( 4\,\ln \left ( 2 \right ) \sqrt {d}{\it \_C1}\,b+ \left ( \ln \left ( 2 \right ) \right ) ^{2}{b}^{2}+4\,d \left ( {{\it \_C1}}^{2}+c \right ) \right ) \sqrt {{{\it \_T}}^{2}a+d}-2\,\ln \left ( 2 \right ) \sqrt {d}{b}^{2}-4\,d{\it \_C1}\,b \right ) {\frac {1}{\sqrt {{{\it \_T}}^{2}a+d}}}},y \left ( {\it \_T} \right ) ={\frac {{\it \_T}}{2} \left ( b\ln \left ( 2 \right ) +b\ln \left ( {\frac {1}{{\it \_T}} \left ( \sqrt {d}\sqrt {{{\it \_T}}^{2}a+d}+d \right ) } \right ) +2\,{\it \_C1}\,\sqrt {d} \right ) {\frac {1}{\sqrt {d}}}{\frac {1}{\sqrt {{{\it \_T}}^{2}a+d}}}}] \right \} \]