2.504   ODE No. 504

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ -\left (-a+x^3+y(x)^3\right ) y'(x)+x^2 y(x)+x y(x)^2 y'(x)^2=0 \] Mathematica : cpu = 300. (sec), leaf count = 0 , timed out

$Aborted

Maple : cpu = 0.799 (sec), leaf count = 247

\[ \left \{ \int _{{\it \_b}}^{y \left ( x \right ) }\!{{{\it \_a}}^{2}{\frac {1}{\sqrt {{x}^{6}+ \left ( -2\,{{\it \_a}}^{3}-2\,a \right ) {x}^{3}+ \left ( -{{\it \_a}}^{3}+a \right ) ^{2}}}}}\,{\rm d}{\it \_a}-{\frac {\ln \left ( x \right ) }{2}}-{\it \_C1}=0,\int _{{\it \_b}}^{y \left ( x \right ) }\!{{{\it \_a}}^{2}{\frac {1}{\sqrt {{x}^{6}+ \left ( -2\,{{\it \_a}}^{3}-2\,a \right ) {x}^{3}+ \left ( -{{\it \_a}}^{3}+a \right ) ^{2}}}}}\,{\rm d}{\it \_a}+{\frac {\ln \left ( x \right ) }{2}}-{\it \_C1}=0,y \left ( x \right ) =\sqrt [3]{{x}^{3}+a-2\,x\sqrt {ax}},y \left ( x \right ) =\sqrt [3]{{x}^{3}+a+2\,x\sqrt {ax}},y \left ( x \right ) ={\frac {i\sqrt {3}-1}{2}\sqrt [3]{{x}^{3}+a-2\,x\sqrt {ax}}},y \left ( x \right ) =-{\frac {i\sqrt {3}+1}{2}\sqrt [3]{{x}^{3}+a-2\,x\sqrt {ax}}},y \left ( x \right ) ={\frac {i\sqrt {3}-1}{2}\sqrt [3]{{x}^{3}+a+2\,x\sqrt {ax}}},y \left ( x \right ) =-{\frac {i\sqrt {3}+1}{2}\sqrt [3]{{x}^{3}+a+2\,x\sqrt {ax}}} \right \} \]