\[ a y(x)+b+x y'(x)+\log \left (y'(x)\right )=0 \] ✓ Mathematica : cpu = 0.158852 (sec), leaf count = 52
\[\text {Solve}\left [W\left (x e^{-a y(x)-b}\right )+\frac {(a+1) \log \left (1-a W\left (x e^{-a y(x)-b}\right )\right )}{a}+a y(x)=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.181 (sec), leaf count = 66
\[ \left \{ - \left ( {{\rm e}^{-ay \left ( x \right ) -{\it lambertW} \left ( x{{\rm e}^{-ay \left ( x \right ) -b}} \right ) -b}} \right ) ^{- \left ( a+1 \right ) ^{-1}}{\it \_C1}+x-{\frac {{{\rm e}^{ay \left ( x \right ) +{\it lambertW} \left ( x{{\rm e}^{-ay \left ( x \right ) -b}} \right ) +b}}}{a}}=0 \right \} \]