\[ y'(x)=\frac {1}{y(x)+\sqrt {3 x+1}+2} \] ✓ Mathematica : cpu = 0.44448 (sec), leaf count = 140
\[\text {Solve}\left [44 c_1+6 \sqrt {33} \tanh ^{-1}\left (\frac {3 y(x)+7 \sqrt {3 x+1}+6}{\sqrt {33} \left (y(x)+\sqrt {3 x+1}+2\right )}\right )=33 \left (\log \left (\frac {-3 \sqrt {3 x+1} y(x)^2-3 \left (3 x+4 \sqrt {3 x+1}+1\right ) y(x)+6 x \left (\sqrt {3 x+1}-3\right )-10 \sqrt {3 x+1}-6}{2 (3 x+1)^{3/2}}\right )+\log (12 x+4)\right ),y(x)\right ]\]
✓ Maple : cpu = 0.243 (sec), leaf count = 77
\[ \left \{ \ln \left ( \left ( 3\,y \left ( x \right ) +6 \right ) \sqrt {3\,x+1}+3\, \left ( y \left ( x \right ) \right ) ^{2}-6\,x+12\,y \left ( x \right ) +10 \right ) -6\,{\frac {\sqrt {3\,x+1}}{\sqrt {99\,x+33}}{\it Artanh} \left ( {\frac {3\,\sqrt {3\,x+1}+6\,y \left ( x \right ) +12}{\sqrt {99\,x+33}}} \right ) }-{\it \_C1}=0 \right \} \]