\[ y'(x)=-\frac {1}{8} x (y(x)+1)^2 (-\log (y(x)-1)+\log (y(x)+1)+2 \log (x)) \] ✗ Mathematica : cpu = 300.029 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.69 (sec), leaf count = 65
\[ \left \{ \int _{{\it \_b}}^{y \left ( x \right ) }\!{\frac {1}{2\,{\it \_a}+2} \left ( {\frac {{x}^{2} \left ( {\it \_a}+1 \right ) \ln \left ( {\it \_a}+1 \right ) }{2}}-{\frac {{x}^{2} \left ( {\it \_a}+1 \right ) \ln \left ( {\it \_a}-1 \right ) }{2}}+{x}^{2} \left ( {\it \_a}+1 \right ) \ln \left ( x \right ) +4\,{\it \_a}-4 \right ) ^{-1}}\,{\rm d}{\it \_a}+{\frac {\ln \left ( x \right ) }{8}}-{\it \_C1}=0 \right \} \]