2.76   ODE No. 76

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

acos(y(x))+b+y(x)=0 Mathematica : cpu = 0.119122 (sec), leaf count = 51

{{y(x)2tan1((ab)tanh(12a2b2(xc1))a2b2)}}

Maple : cpu = 0.057 (sec), leaf count = 41

{y(x)=2arctan(tanh(1/2a2b2(x+_C1))a2b2a+b)}

Hand solution

y=acosy+b

This is separable.

dyacosy+b=dx(1)dyacosy+b=x+C

Using standard Tangent half-angle substitution, let t=tany2,cosy=1t21+t2,dy=21+t2dt, then the integral becomes

dyacosy+b=21+t21(a1t21+t2+b)dt=21+t2(1+t2)(a(1t2)+b(1+t2))dt=2dtaat2+b+bt2=2dt(a+b)+t2(ba)=2dt(a+b)(1+t2(ba)(a+b))=2a+bdt(1+t2(ba)(a+b))

Let z2=t2(ba)(a+b), or z=tbaa+b, then dzdt=baa+b and the above integral becomes

2a+bdt(1+t2(ba)(a+b))=2a+ba+bbadz(1+z2)=2a+ba+bbadz(1+z2)=2a+b1badz(1+z2)=2(a+b)(ba)dz(1+z2)=2b2a2dz(1+z2)

Now, dz(1+z2)=arctan(z), hence

2b2a2dz(1+z2)=2b2a2arctan(z)=2b2a2arctan(tbaa+b)

But t=tany2 therefore

2b2a2arctan(tbaa+b)=2b2a2arctan(tan(y2)baa+b)

Going back to (1)

dyacosy+b=x+C2b2a2arctan(tan(y2)baa+b)=x+Carctan(tan(y2)baa+b)=12b2a2(x+C)tan(y2)baa+b=tan(12b2a2(x+C))tan(y2)=a+bbatan(12b2a2(x+C))y2=arctan((a+b)(a+b)(ba)tan(12b2a2(x+C)))=arctan((a+b)b2a2tan(12b2a2(x+C)))y=2arctan(a+bb2a2tan(12b2a2(x+C)))

Verification

ode:=diff(y(x),x)=a*cos(y(x))+b; 
my_sol:=2*arctan( (a+b)/sqrt(b^2-a^2) * tan(1/2*sqrt(b^2-a^2)*(x+_C1))); 
odetest(y(x)=my_sol,ode); 
0