[next] [prev] [prev-tail] [tail] [up]
y′(x)=−y(x)(xy(x)+1)x(xy(x)−y(x)+1) ✓ Mathematica : cpu = 25.0813 (sec), leaf count = 399
Solve[−−23(22/3((x−1)y(x)−2)−1(x−1)33(x−1)((x−1)y(x)+1)+(−2)2/3)(−xy(x)+y(x)+223−1(x−1)33(x−1)((x−1)y(x)+1)+(−2)2/3)((−13(−xy(x)+y(x)+2)−1(x−1)33(x−1)((x−1)y(x)+1)+1)(−log(22/3((x−1)y(x)−2)−1(x−1)33(x−1)((x−1)y(x)+1)+(−2)2/3))+(−13(−xy(x)+y(x)+2)−1(x−1)33(x−1)((x−1)y(x)+1)+1)log(22/3(−xy(x)+y(x)+2)−1(x−1)33(x−1)((x−1)y(x)+1)+2(−2)2/3)+3)9(((x−1)y(x)−2)3((x−1)y(x)+1)3+3−13((x−1)y(x)−2)(−1(x−1)3)4/3(x−1)4((x−1)y(x)+1)+2)=c1+1922/3(−1(x−1)3)2/3(x−1)2(log(1−x)−log(x)),y(x)]
✓ Maple : cpu = 0.142 (sec), leaf count = 32
{y(x)=−21xe−lambertW(−2(x−1)(e_C1)3e−1x)+3_C1−1}
[next] [prev] [prev-tail] [front] [up]