\[ y'(x)=\frac {(x-y(x)) y(x)}{x \left (-y(x)^4-y(x)^3-y(x)+x\right )} \] ✓ Mathematica : cpu = 0.576527 (sec), leaf count = 34
\[\text {Solve}\left [\log (x)=c_1+\frac {y(x)^3}{3}+\frac {y(x)^2}{2}+\frac {x}{y(x)}+\log (y(x)),y(x)\right ]\]
✓ Maple : cpu = 0.179 (sec), leaf count = 38
\[ \left \{ y \left ( x \right ) ={{\rm e}^{{\it RootOf} \left ( 2\, \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{4}+3\, \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{3}-6\,{{\rm e}^{{\it \_Z}}}\ln \left ( x \right ) +6\,{\it \_C1}\,{{\rm e}^{{\it \_Z}}}+6\,{\it \_Z}\,{{\rm e}^{{\it \_Z}}}+6\,x \right ) }} \right \} \]