\[ y'(x)=\frac {1}{x^2 \left (-\left (\frac {1}{y(x)}+1\right )\right ) \text {$\_$F1}\left (x \left (\frac {1}{y(x)}+1\right )\right )+x^2 \text {$\_$F1}\left (x \left (\frac {1}{y(x)}+1\right )\right )+x \left (\frac {1}{y(x)}+1\right )-x} \] ✓ Mathematica : cpu = 1.60597 (sec), leaf count = 174
\[\text {Solve}\left [c_1=\int _1^{y(x)} \left (\frac {x \text {$\_$F1}\left (x \left (\frac {1}{K[2]}+1\right )\right )-1}{x (K[2]+1) \text {$\_$F1}\left (x \left (\frac {1}{K[2]}+1\right )\right )-K[2]}-\int _1^x \frac {K[1] (K[2]+1) \text {$\_$F1}'\left (K[1] \left (\frac {1}{K[2]}+1\right )\right )+K[2] \text {$\_$F1}\left (K[1] \left (\frac {1}{K[2]}+1\right )\right )}{K[2] \left (K[2]-K[1] (K[2]+1) \text {$\_$F1}\left (K[1] \left (\frac {1}{K[2]}+1\right )\right )\right ){}^2} \, dK[1]\right ) \, dK[2]+\int _1^x \frac {y(x)}{K[1] \left (K[1] \text {$\_$F1}\left (\left (\frac {1}{y(x)}+1\right ) K[1]\right )+y(x) \left (K[1] \text {$\_$F1}\left (\left (\frac {1}{y(x)}+1\right ) K[1]\right )-1\right )\right )} \, dK[1],y(x)\right ]\]
✓ Maple : cpu = 0.22 (sec), leaf count = 40
\[ \left \{ y \left ( x \right ) ={{\rm e}^{{\it RootOf} \left ( -{\it \_Z}-\int ^{{\frac {{{\rm e}^{{\it \_Z}}}x}{{{\rm e}^{{\it \_Z}}}-1}}}\!{\frac {1}{ \left ( {\it \_F1} \left ( {\it \_a} \right ) {\it \_a}-1 \right ) {\it \_a}}}{d{\it \_a}}+{\it \_C1} \right ) }}-1 \right \} \]