\[ y'(x)=\frac {a^3 x^3+3 a^2 b x^2 y(x)+a^2 b x^2+3 a b^2 x y(x)^2+2 a b^2 x y(x)+b^3 y(x)^3+b^3 y(x)^2+b^3}{b^3} \] ✓ Mathematica : cpu = 0.256512 (sec), leaf count = 136
\[\text {Solve}\left [3 (27 a+29 b)^{2/3} \text {RootSum}\left [\text {$\#$1}^3 (27 a+29 b)^{2/3}-3 \text {$\#$1} b^{2/3}+(27 a+29 b)^{2/3}\& ,\frac {\log \left (\frac {3 a x+3 b y(x)+b}{b \sqrt [3]{\frac {27 a}{b}+29}}-\text {$\#$1}\right )}{b^{2/3}-\text {$\#$1}^2 (27 a+29 b)^{2/3}}\& \right ]+x \left (\frac {27 a}{b}+29\right )^{2/3}+9 c_1=0,y(x)\right ]\]
✓ Maple : cpu = 0.079 (sec), leaf count = 42
\[ \left \{ y \left ( x \right ) ={\frac {{\it RootOf} \left ( \int ^{{\it \_Z}}\! \left ( {{\it \_a}}^{3}b+{{\it \_a}}^{2}b+a+b \right ) ^{-1}{d{\it \_a}}b-x+{\it \_C1} \right ) b-ax}{b}} \right \} \]