\[ y'(x)=\frac {y(x) \left (y(x) e^{\frac {2 \log ^2(x)}{\log (x)+1}} x^{\frac {2}{\log (x)+1}+2}+y(x) e^{\frac {2 \log ^2(x)}{\log (x)+1}} \log ^2(x) x^{\frac {2}{\log (x)+1}+2}+2 y(x) e^{\frac {2 \log ^2(x)}{\log (x)+1}} \log (x) x^{\frac {2}{\log (x)+1}+2}-e^{\frac {2 \log ^2(x)}{\log (x)+1}} x^{\frac {2}{\log (x)+1}+2}-e^{\frac {2 \log ^2(x)}{\log (x)+1}} \log (x) x^{\frac {2}{\log (x)+1}+2}-1\right )}{x (\log (x)+1)} \] ✓ Mathematica : cpu = 0.23732 (sec), leaf count = 28
\[\left \{\left \{y(x)\to \frac {1}{\left (c_1 e^{\frac {x^4}{4}}+1\right ) (\log (x)+1)}\right \}\right \}\]
✓ Maple : cpu = 1.581 (sec), leaf count = 79
\[ \left \{ y \left ( x \right ) ={\frac {1}{\ln \left ( x \right ) +1}{{\rm e}^{-{\frac {{x}^{4}}{4}}}} \left ( {x}^{-2\,{\frac {\ln \left ( x \right ) }{\ln \left ( x \right ) +1}}} \left ( \ln \left ( x \right ) +1 \right ) {{\rm e}^{{\frac { \left ( -4\,\ln \left ( x \right ) -4 \right ) \ln \left ( \ln \left ( x \right ) +1 \right ) -{x}^{4}\ln \left ( x \right ) -{x}^{4}+8\, \left ( \ln \left ( x \right ) \right ) ^{2}}{4\,\ln \left ( x \right ) +4}}}}+{\it \_C1} \right ) ^{-1}} \right \} \]