\[ y'(x)=\frac {(x y(x)+1) \left (x^2 y(x)^2+x^2 y(x)+x^2+2 x y(x)+x+1\right )}{x^5} \] ✓ Mathematica : cpu = 0.303364 (sec), leaf count = 96
\[\text {Solve}\left [34^{2/3} \left (-\frac {1}{x^6}\right )^{2/3} x^3=51 \text {RootSum}\left [-17 \text {$\#$1}^3+3 \sqrt [3]{-34} \text {$\#$1}-17\& ,\frac {\log \left (\frac {3 x y(x)+x+3}{\sqrt [3]{34} \sqrt [3]{-\frac {1}{x^6}} x^3}-\text {$\#$1}\right )}{\sqrt [3]{-34}-17 \text {$\#$1}^2}\& \right ]+9 c_1,y(x)\right ]\]
✓ Maple : cpu = 0.056 (sec), leaf count = 43
\[ \left \{ y \left ( x \right ) ={\frac {17\,{\it RootOf} \left ( 162\,\int ^{{\it \_Z}}\! \left ( 289\,{{\it \_a}}^{3}+54\,{\it \_a}-54 \right ) ^{-1}{d{\it \_a}}x+3\,{\it \_C1}\,x+2 \right ) x-3\,x-9}{9\,x}} \right \} \]