\[ y'(x)=\frac {(y(x)-x+\log (x+1))^2+x}{x+1} \] ✓ Mathematica : cpu = 0.0240231 (sec), leaf count = 24
\[\left \{\left \{y(x)\to \frac {1}{c_1-\log (x+1)}+x-\log (x+1)\right \}\right \}\]
✓ Maple : cpu = 0.078 (sec), leaf count = 36
\[ \left \{ y \left ( x \right ) ={\frac {- \left ( \ln \left ( 1+x \right ) \right ) ^{2}+ \left ( -{\it \_C1}+x \right ) \ln \left ( 1+x \right ) +{\it \_C1}\,x-1}{\ln \left ( 1+x \right ) +{\it \_C1}}} \right \} \]