10.11.3 Can you answer these questions?

10.11.3.1 Numerically solving a non-linear and with infinite domain integro-differential equation
10.11.3.2 Tree edge label visibility and legibility
10.11.3.3 GeoProjection used in area computation of relatively small regions
10.11.3.1 Numerically solving a non-linear and with infinite domain integro-differential equation

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=301261

I have tried NDsolve but failed. Would there be any way to solve this equation numerically using Mathematica? 
Here is the code: 
... 
[differential-equations] [numerical-integration] [integral-equations]
 
asked by keer Zhang https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=98273 Score of 1
10.11.3.2 Tree edge label visibility and legibility

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=301412

I am building some tools to help me visualize fitting of generic n-dimensional nonlinear model. I have the data and results stored in a nested association. I've written a few functions to generate a <... 
[graphs-and-networks] [visualization] [trees]
                                                                                  

                                                                                  
 
asked by Tapiocaweasel https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=93168 Score of 1
10.11.3.3 GeoProjection used in area computation of relatively small regions

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=301209

Let's define a relatively small region via GeoPosition as follows. 
 pos = GeoPosition[{{48, 9}, {48.0001, 9}, {48.0001, 9.0001}, {48, 9.0001}}, "WGS84"] 
 
... 
[geometry] [geographics]
 
asked by Math Gaudium https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=74255 Score of 2