Added December 20, 2018.
Third oder PDE. Solve for \(u(x,y)\) \[ u_t + u_{xxx} = 0 \] With initial conditions \begin {align*} u(x,0)&=f(x) \end {align*}
Mathematica ✗
ClearAll["Global`*"]; pde = D[u[x, t], t] == -D[u[x, t], {x, 3}]; ic = u[x, 0] == f[x]; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, ic}, u[x, t], {x, t}], 60*10]];
Failed
Maple ✓
restart; pde := diff(u(x, t), t)=- diff(u(x, t), x$3); ic := u(x,0)=f(x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, ic],u(x,t))),output='realtime'));
\[u \left ( x,t \right ) =1/4\,{\frac {1}{{\pi }^{2}}\int _{-\infty }^{\infty }\!4/3\,{\frac {\pi \,f \left ( -\zeta \right ) }{\sqrt [3]{-t}}\sqrt {-{\frac {x+\zeta }{\sqrt [3]{-t}}}}\BesselK \left ( 1/3,-2/9\,{\frac {\sqrt {3} \left ( x+\zeta \right ) }{\sqrt [3]{-t}}\sqrt {-{\frac {x+\zeta }{\sqrt [3]{-t}}}}} \right ) }\,{\rm d}\zeta }\]
____________________________________________________________________________________