Added January 10, 2019.
Problem 2.4.5.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + a \sinh (\lambda x) \cosh (\mu y) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + a*Sinh[lambda*x]*Cosh[mu*y]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {4 \tan ^{-1}\left (\tanh \left (\frac {\mu y}{2}\right )\right )}{\mu }-\frac {2 a \cosh (\lambda x)}{\lambda }\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+a*sinh(lambda*x)*cosh(mu*y)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {-\cosh \left ( \lambda \,x \right ) a\mu +2\,\arctan \left ( {{\rm e}^{\mu \,y}} \right ) \lambda }{\lambda \,a\mu }} \right ) \]
____________________________________________________________________________________
Added January 10, 2019.
Problem 2.4.5.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + a \cosh (\lambda x) \sinh (\mu y) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + a*Cosh[lambda*x]*Sinh[mu*y]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {\log \left (\tanh ^2\left (\frac {\mu y}{2}\right )\right )}{\mu }-\frac {2 a \sinh (\lambda x)}{\lambda }\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+a*cosh(lambda*x)*sinh(mu*y)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( 1/2\,{\frac {-{{\rm e}^{\lambda \,x}}a\mu -4\,\arctanh \left ( {{\rm e}^{\mu \,y}} \right ) \lambda +a\mu \,{{\rm e}^{-\lambda \,x}}}{\lambda \,a\mu }} \right ) \]
____________________________________________________________________________________
Added January 10, 2019.
Problem 2.4.5.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( y^2 -2 \lambda ^2 \tanh ^2(\lambda x) - 2 \lambda ^2 \coth ^2(\lambda x) \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 - 2*lambda^2*Tanh[lambda*x]^2 - 2*lambda^2*Coth[lambda*x]^2)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {e^{-4 \lambda x} \left (16 \lambda ^2 x e^{4 \lambda x} \left (e^{4 \lambda x}+1\right )+y \left (e^{4 \lambda x}+1\right ) \left (e^{4 \lambda x}-1\right )^2+2 \lambda \left (e^{4 \lambda x}-1\right ) \left (-2 e^{4 \lambda x} (2 x y+3)+e^{8 \lambda x}+1\right )\right )}{2 \left (-y e^{4 \lambda x}+2 \lambda \left (e^{4 \lambda x}+1\right )+y\right )}\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+(y^2 -2 *lambda^2*tanh(lambda*x)^2 - 2*lambda^2*coth(lambda*x)^2)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {(-4\, \left ( {\rm coth} \left (\lambda \,x\right ) \right ) ^{2}\sinh \left ( \lambda \,x \right ) \lambda + \left ( -4\,y\sinh \left ( \lambda \,x \right ) +8\,\lambda \,\cosh \left ( \lambda \,x \right ) \right ) {\rm coth} \left (\lambda \,x\right )+4\,\lambda \,\sinh \left ( \lambda \,x \right ) ) \left ( \left ( 4\, \left ( {\rm coth} \left (\lambda \,x\right ) \right ) ^{2}\sinh \left ( \lambda \,x \right ) \lambda + \left ( 4\,y\sinh \left ( \lambda \,x \right ) -8\,\lambda \,\cosh \left ( \lambda \,x \right ) \right ) {\rm coth} \left (\lambda \,x\right )-4\,\lambda \,\sinh \left ( \lambda \,x \right ) \right ) \ln \left ( {\frac {\cosh \left ( \lambda \,x \right ) -\sinh \left ( \lambda \,x \right ) }{\sinh \left ( \lambda \,x \right ) }} \right ) + \left ( -4\, \left ( {\rm coth} \left (\lambda \,x\right ) \right ) ^{2}\sinh \left ( \lambda \,x \right ) \lambda + \left ( -4\,y\sinh \left ( \lambda \,x \right ) +8\,\lambda \,\cosh \left ( \lambda \,x \right ) \right ) {\rm coth} \left (\lambda \,x\right )+4\,\lambda \,\sinh \left ( \lambda \,x \right ) \right ) \ln \left ( {\frac {\sinh \left ( \lambda \,x \right ) +\cosh \left ( \lambda \,x \right ) }{\sinh \left ( \lambda \,x \right ) }} \right ) + \left ( - \left ( {\rm coth} \left (\lambda \,x\right ) \right ) ^{2}\lambda -{\rm coth} \left (\lambda \,x\right )y+\lambda \right ) \cosh \left ( 3\,\lambda \,x \right ) + \left ( \left ( {\rm coth} \left (\lambda \,x\right ) \right ) ^{2}\lambda +{\rm coth} \left (\lambda \,x\right )y-\lambda \right ) \cosh \left ( 5\,\lambda \,x \right ) +2\,\lambda \,{\rm coth} \left (\lambda \,x\right ) \left ( \sinh \left ( 5\,\lambda \,x \right ) -4\,\sinh \left ( \lambda \,x \right ) -3\,\sinh \left ( 3\,\lambda \,x \right ) \right ) \right ) ^{-1}} \right ) \]
____________________________________________________________________________________
Added January 10, 2019.
Problem 2.4.5.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( y^2 +\lambda (a+b)-2 a b -a(a+\lambda ) \tanh ^2(\lambda x) - b(b+\lambda ) \coth ^2(\lambda x) \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + lambda*(a + b) - 2*a*b - a*(a + lambda)*Tanh[lambda*x]^2 - b*(b + lambda)*Coth[lambda*x]^2)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+(y^2 +lambda*(a+b)-2*a*b -a*(a+lambda)*tanh(lambda*x)^2 - b*(b+lambda)*coth(lambda*x)^2)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( { \left ( 2\,a+3\,\lambda \right ) \left ( a \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{2}+ \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{2}b-y\cosh \left ( \lambda \,x \right ) \sinh \left ( \lambda \,x \right ) -a \right ) \left ( \sinh \left ( \lambda \,x \right ) \right ) ^{2} \left ( {\frac {\cosh \left ( \lambda \,x \right ) }{\sinh \left ( \lambda \,x \right ) }} \right ) ^{{\frac {-2\,a-\lambda }{\lambda }}} \left ( - \left ( \sinh \left ( \lambda \,x \right ) \right ) ^{-2} \right ) ^{{\frac {a+b}{\lambda }}} \left ( 4\, \left ( b-\lambda /2 \right ) \lambda \, \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{2}\hypergeom \left ( [2,-1/2\,{\frac {2\,b-3\,\lambda }{\lambda }}],[1/2\,{\frac {2\,a+5\,\lambda }{\lambda }}],{\frac { \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{2}}{ \left ( \sinh \left ( \lambda \,x \right ) \right ) ^{2}}} \right ) +2\, \left ( \cosh \left ( \lambda \,x \right ) -1 \right ) \left ( 3/2\,\lambda +a \right ) \hypergeom \left ( [1,1/2\,{\frac {-2\,b+\lambda }{\lambda }}],[1/2\,{\frac {2\,a+3\,\lambda }{\lambda }}],{\frac { \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{2}}{ \left ( \sinh \left ( \lambda \,x \right ) \right ) ^{2}}} \right ) \left ( \cosh \left ( \lambda \,x \right ) +1 \right ) \left ( \left ( a+b \right ) \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{2}+y\cosh \left ( \lambda \,x \right ) \sinh \left ( \lambda \,x \right ) -a-\lambda \right ) \right ) ^{-1}} \right ) \]
____________________________________________________________________________________
Added January 10, 2019.
Problem 2.4.5.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ \sinh (\lambda y) w_x + a \cosh (\beta x) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = Sinh[lambda*y]*D[w[x, y], x] + a*Cosh[beta*x]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {\cosh (\lambda y)}{\lambda }-\frac {a \sinh (\beta x)}{\beta }\right )\right \}\right \}\]
Maple ✓
restart; pde := sinh(lambda*y)*diff(w(x,y),x)+a*cosh(beta*x)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {-\sinh \left ( \beta \,x \right ) a\lambda +\cosh \left ( y\lambda \right ) \beta }{a\beta \,\lambda }} \right ) \]
____________________________________________________________________________________
Added January 10, 2019.
Problem 2.4.5.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ \left ( a x^n \cosh ^m(\lambda y)+ b x \right ) w_x + \sinh ^k(\beta y) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = (a*x^n*Cosh[lambda*y]^m + b*x)*D[w[x, y], x] + Sinh[beta*y]^k*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := (a*x^n*cosh(lambda*y)^m+b*x)*diff(w(x,y),x)+sinh(beta*y)^k*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( a \left ( n-1 \right ) \int \!{{\rm e}^{b\int \! \left ( \sinh \left ( \beta \,y \right ) \right ) ^{-k}\,{\rm d}y \left ( n-1 \right ) }} \left ( \cosh \left ( y\lambda \right ) \right ) ^{m} \left ( \sinh \left ( \beta \,y \right ) \right ) ^{-k}\,{\rm d}y+{x}^{-n+1}{{\rm e}^{b\int \! \left ( \sinh \left ( \beta \,y \right ) \right ) ^{-k}\,{\rm d}y \left ( n-1 \right ) }} \right ) \]
____________________________________________________________________________________