6.2.17 6.3

6.2.17.1 [666] problem number 1
6.2.17.2 [667] problem number 2
6.2.17.3 [668] problem number 3
6.2.17.4 [669] problem number 4
6.2.17.5 [670] problem number 5
6.2.17.6 [671] problem number 6
6.2.17.7 [672] problem number 7
6.2.17.8 [673] problem number 8
6.2.17.9 [674] problem number 9
6.2.17.10 [675] problem number 10
6.2.17.11 [676] problem number 11
6.2.17.12 [677] problem number 12
6.2.17.13 [678] problem number 13
6.2.17.14 [679] problem number 14
6.2.17.15 [680] problem number 15

6.2.17.1 [666] problem number 1

problem number 666

Added January 14, 2019.

Problem 2.6.3.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + \left ( a \tan ^k(\lambda x)+b\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (a + Tan[lambda*x] + b)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (-a x-b x+\frac {\log (\cos (\lambda x))}{\lambda }+y\right )\right \}\right \}\]

Maple

restart; 
pde :=  diff(w(x,y),x)+(a+tan(lambda*x)+b)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( 1/2\,{\frac {-\ln \left ( 1+ \left ( \tan \left ( \lambda \,x \right ) \right ) ^{2} \right ) + \left ( \left ( -2\,a-2\,b \right ) x+2\,y \right ) \lambda }{\lambda }} \right ) \]

____________________________________________________________________________________

6.2.17.2 [667] problem number 2

problem number 667

Added January 14, 2019.

Problem 2.6.3.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + \left ( a \tan ^k(\lambda y)+b\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (a + Tan[lambda*y] + b)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (-x+\frac {-i (a+b-i) \log (-\tan (\lambda y)+i)+i (a+b+i) \log (\tan (\lambda y)+i)+2 \log (a+b+\tan (\lambda y))}{2 \lambda (a+b-i) (a+b+i)}\right )\right \}\right \}\]

Maple

restart; 
pde :=  diff(w(x,y),x)+(a+tan(lambda*y)+b)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( 1/2\,{\frac {\ln \left ( 1+ \left ( \tan \left ( y\lambda \right ) \right ) ^{2} \right ) -2\,\ln \left ( a+\tan \left ( y\lambda \right ) +b \right ) + \left ( -2\,a-2\,b \right ) \arctan \left ( \tan \left ( y\lambda \right ) \right ) + \left ( 2\,{a}^{2}x+4\,axb+2\,{b}^{2}x+2\,x \right ) \lambda }{\lambda \, \left ( {a}^{2}+2\,ab+{b}^{2}+1 \right ) }} \right ) \]

____________________________________________________________________________________

6.2.17.3 [668] problem number 3

problem number 668

Added January 14, 2019.

Problem 2.6.3.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + a \tan ^k(\lambda x) \tan ^n(\mu y) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + a*Tan[lambda*x]^k*Tan[mu*y]^n*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (\frac {\tan ^{1-n}(\mu y) \, _2F_1\left (1,\frac {1}{2}-\frac {n}{2};\frac {3}{2}-\frac {n}{2};-\tan ^2(\mu y)\right )}{\mu -\mu n}-\frac {a \tan ^{k+1}(\lambda x) \, _2F_1\left (1,\frac {k+1}{2};\frac {k+3}{2};-\tan ^2(\lambda x)\right )}{k \lambda +\lambda }\right )\right \}\right \}\]

Maple

restart; 
pde :=  diff(w(x,y),x)+a *tan(lambda*x)^k * tan(mu*y)^n*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( -\int \! \left ( \tan \left ( \lambda \,x \right ) \right ) ^{k}\,{\rm d}x+\int \!{\frac { \left ( \tan \left ( \mu \,y \right ) \right ) ^{-n}}{a}}\,{\rm d}y \right ) \] Has unresolved integrals

____________________________________________________________________________________

6.2.17.4 [669] problem number 4

problem number 669

Added January 14, 2019.

Problem 2.6.3.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x +\left ( y^2+ a \lambda + a(\lambda -a) \tan ^2(\lambda x)\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (y^2 + a*lambda + a*(lambda - a)*Tan[lambda*x]^2)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+( y^2+ a *lambda + a*(lambda -a) *tan(lambda*x)^2)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( \left ( \left ( -4\,y \left ( \cos \left ( \lambda \,x \right ) \right ) ^{3}-\sin \left ( \lambda \,x \right ) a-\sin \left ( 3\,\lambda \,x \right ) a \right ) \LegendreP \left ( 1/2\,{\frac {-\lambda +2\,a}{\lambda }},1/2\,{\frac {-\lambda +2\,a}{\lambda }},\sin \left ( \lambda \,x \right ) \right ) +2\, \left ( \cos \left ( 2\,\lambda \,x \right ) +1 \right ) \LegendreP \left ( 1/2\,{\frac {2\,a+\lambda }{\lambda }},1/2\,{\frac {-\lambda +2\,a}{\lambda }},\sin \left ( \lambda \,x \right ) \right ) \lambda \right ) \left ( \left ( 4\,y \left ( \cos \left ( \lambda \,x \right ) \right ) ^{3}+\sin \left ( \lambda \,x \right ) a+\sin \left ( 3\,\lambda \,x \right ) a \right ) \LegendreQ \left ( 1/2\,{\frac {-\lambda +2\,a}{\lambda }},1/2\,{\frac {-\lambda +2\,a}{\lambda }},\sin \left ( \lambda \,x \right ) \right ) -2\,\LegendreQ \left ( 1/2\,{\frac {2\,a+\lambda }{\lambda }},1/2\,{\frac {-\lambda +2\,a}{\lambda }},\sin \left ( \lambda \,x \right ) \right ) \left ( \cos \left ( 2\,\lambda \,x \right ) +1 \right ) \lambda \right ) ^{-1} \right ) \]

____________________________________________________________________________________

6.2.17.5 [670] problem number 5

problem number 670

Added January 14, 2019.

Problem 2.6.3.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x +\left ( y^2+ \lambda ^2 +3 a \lambda +a(\lambda -a) \tan ^2(\lambda x)\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (y^2 + lambda^2 + 3*a*lambda + a*(lambda - a)*Tan[lambda*x]^2)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+(  y^2+ lambda^2 +3*a*lambda +a*(lambda-a)*tan(lambda*x)^2)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( \left ( 4\,\LegendreP \left ( 1/2\,{\frac {2\,a+3\,\lambda }{\lambda }},1/2\,{\frac {-\lambda +2\,a}{\lambda }},\sin \left ( \lambda \,x \right ) \right ) \left ( \cos \left ( \lambda \,x \right ) \right ) ^{2}\lambda -2\,\LegendreP \left ( 1/2\,{\frac {2\,a+\lambda }{\lambda }},1/2\,{\frac {-\lambda +2\,a}{\lambda }},\sin \left ( \lambda \,x \right ) \right ) \left ( \sin \left ( \lambda \,x \right ) \left ( a+3/2\,\lambda \right ) \left ( \cos \left ( \lambda \,x \right ) \right ) ^{2}+ \left ( -y \left ( \sin \left ( \lambda \,x \right ) \right ) ^{2}+y \right ) \cos \left ( \lambda \,x \right ) +1/2\,\lambda \, \left ( \sin \left ( \lambda \,x \right ) \right ) ^{3}-1/2\,\lambda \,\sin \left ( \lambda \,x \right ) \right ) \right ) \left ( -4\, \left ( \cos \left ( \lambda \,x \right ) \right ) ^{2}\LegendreQ \left ( 1/2\,{\frac {2\,a+3\,\lambda }{\lambda }},1/2\,{\frac {-\lambda +2\,a}{\lambda }},\sin \left ( \lambda \,x \right ) \right ) \lambda +2\,\LegendreQ \left ( 1/2\,{\frac {2\,a+\lambda }{\lambda }},1/2\,{\frac {-\lambda +2\,a}{\lambda }},\sin \left ( \lambda \,x \right ) \right ) \left ( \sin \left ( \lambda \,x \right ) \left ( a+3/2\,\lambda \right ) \left ( \cos \left ( \lambda \,x \right ) \right ) ^{2}+ \left ( -y \left ( \sin \left ( \lambda \,x \right ) \right ) ^{2}+y \right ) \cos \left ( \lambda \,x \right ) +1/2\,\lambda \, \left ( \sin \left ( \lambda \,x \right ) \right ) ^{3}-1/2\,\lambda \,\sin \left ( \lambda \,x \right ) \right ) \right ) ^{-1} \right ) \]

____________________________________________________________________________________

6.2.17.6 [671] problem number 6

problem number 671

Added January 14, 2019.

Problem 2.6.3.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x +\left ( y^2+ a x \tan ^k(b x) y + a \tan ^k(b x) \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (y^2 + a*x*Tan[b*x]^k*y + a*Tan[b*x]^k)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (-\frac {\exp \left (-\int _1^x-a K[5] \tan ^k(b K[5])dK[5]\right )}{x^2 y+x}-\int _1^x\frac {\exp \left (-\int _1^{K[6]}-a K[5] \tan ^k(b K[5])dK[5]\right )}{K[6]^2}dK[6]\right )\right \}\right \}\]

Maple

restart; 
pde :=  diff(w(x,y),x)+(  y^2+ a*x  *tan(b*x)^k * y + a*tan(b*x)^k)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{xy+1} \left ( xy\int \!{{\rm e}^{\int \!{\frac {a \left ( \tan \left ( bx \right ) \right ) ^{k}{x}^{2}-2}{x}}\,{\rm d}x}}\,{\rm d}x+{{\rm e}^{\int \!{\frac {a \left ( \tan \left ( bx \right ) \right ) ^{k}{x}^{2}-2}{x}}\,{\rm d}x}}x+\int \!{{\rm e}^{\int \!{\frac {a \left ( \tan \left ( bx \right ) \right ) ^{k}{x}^{2}-2}{x}}\,{\rm d}x}}\,{\rm d}x \right ) } \right ) \]

____________________________________________________________________________________

6.2.17.7 [672] problem number 7

problem number 672

Added January 14, 2019.

Problem 2.6.3.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x -\left ( (k+1) x^k y^2- a x^{k+1} (\tan x)^m y + a(\tan x)^m \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] - ((k + 1)*x^k*y^2 - a*x^(k + 1)*Tan[x]^m*y + a*Tan[x]^m)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)-(  (k+1)*x^k*y^2- a*x^(k+1)*tan(x)^m*y + a*tan(x)^m )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

server hangs Server hangs

____________________________________________________________________________________

6.2.17.8 [673] problem number 8

problem number 673

Added January 20, 2019.

Problem 2.6.3.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x +\left ( a \tan ^n(\lambda x) y^2- a b^2 \tan ^{n+2}(\lambda x) + b \lambda \tan ^2(\lambda x)+ b \lambda \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (a*Tan[lambda*x]^n*y^2 - a*b^2*Tan[lambda*x]^(n + 2) + b*lambda*Tan[lambda*x]^2 + b*lambda)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+(a*tan(lambda*x)^n*y^2- a*b^2*tan(lambda*x)^(n+2) + b*lambda*tan(lambda*x)^2+ b*lambda)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

server hangs Server hangs

____________________________________________________________________________________

6.2.17.9 [674] problem number 9

problem number 674

Added January 20, 2019.

Problem 2.6.3.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x +\left ( a \tan ^k(\lambda x+\mu )(y-b x^n-c)^2 + y- b x^n + b n x^{n-1}-c \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (a*Tan[lambda*x + mu]^k*(y - b*x^n - c)^2 + y - b*x^n + b*n*x^(n - 1) - c)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+(a *tan(lambda*x+mu)^k*(y-b*x^n-c)^2 + y- b*x^n + b*n*x^(n-1)-c)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

time expired

____________________________________________________________________________________

6.2.17.10 [675] problem number 10

problem number 675

Added January 20, 2019.

Problem 2.6.3.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ x w_x +\left ( a \tan ^m(\lambda x)y^2 +k y+ a b^2 x^{2 k} \tan ^m(\lambda x) \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x, y], x] + (a*Tan[lambda*x]^m*y^2 + k*y + a*b^2*x^(2*k)*Tan[lambda*x]^m)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (\tan ^{-1}\left (\frac {y x^{-k}}{\sqrt {b^2}}\right )-\sqrt {b^2} \int _1^xa K[1]^{k-1} \tan ^m(\lambda K[1])dK[1]\right )\right \}\right \}\]

Maple

restart; 
pde :=  x*diff(w(x,y),x)+ (a*tan(lambda*x)^m*y^2 +k*y+ a*b^2*x^(2*k)*tan(lambda*x)^m )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( ab\int \!{x}^{k-1} \left ( \tan \left ( \lambda \,x \right ) \right ) ^{m}\,{\rm d}x-\arctan \left ( {\frac {{x}^{-k}y}{b}} \right ) \right ) \]

____________________________________________________________________________________

6.2.17.11 [676] problem number 11

problem number 676

Added January 20, 2019.

Problem 2.6.3.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ (a \tan (\lambda x)+b) w_x +\left ( y^2+ c \tan (\mu x) y - k^2 + c k \tan (\mu x) \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  (a*Tan[lambda*x] + b)*D[w[x, y], x] + (y^2 + c*Tan[mu*x]*y - k^2 + c*k*Tan[mu*x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=   (a*tan(lambda*x)+b)*diff(w(x,y),x)+ (y^2+ c *tan(mu*x)*y - k^2 + c*k*tan(mu*x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{k+y} \left ( {{\rm e}^{{\frac {{a}^{2}cx}{ \left ( {a}^{2}+{b}^{2} \right ) \left ( a+ib \right ) }}}} \left ( {{\rm e}^{2\,i\mu \,x}}+1 \right ) ^{{\frac {i{a}^{2}c}{ \left ( {a}^{2}+{b}^{2} \right ) \left ( a+ib \right ) \mu }}}{{\rm e}^{{\frac {{b}^{2}cx}{ \left ( {a}^{2}+{b}^{2} \right ) \left ( a+ib \right ) }}}} \left ( {{\rm e}^{2\,i\mu \,x}}+1 \right ) ^{{\frac {i{b}^{2}c}{ \left ( {a}^{2}+{b}^{2} \right ) \left ( a+ib \right ) \mu }}} \left ( {{\rm e}^{{\frac {kb}{\lambda \, \left ( {a}^{2}+{b}^{2} \right ) }\arctan \left ( {\frac {\sin \left ( \lambda \,x \right ) }{\cos \left ( \lambda \,x \right ) }} \right ) }}} \right ) ^{2} \left ( k+y \right ) \int \!{\frac {\cos \left ( \lambda \,x \right ) }{b\cos \left ( \lambda \,x \right ) +\sin \left ( \lambda \,x \right ) a}{{\rm e}^{{\frac {-i{a}^{2}c}{2\,{a}^{2}+2\,{b}^{2}}\int \!{\frac {4\,ia \left ( {{\rm e}^{2\,i\mu \,x}}-1 \right ) }{ \left ( {{\rm e}^{2\,i\mu \,x}}+1 \right ) \left ( \left ( a+ib \right ) {{\rm e}^{2\,i\lambda \,x}}+ib-a \right ) \left ( a+ib \right ) }}\,{\rm d}x}}}{{\rm e}^{{\frac {-i{b}^{2}c}{2\,{a}^{2}+2\,{b}^{2}}\int \!{\frac {4\,ia \left ( {{\rm e}^{2\,i\mu \,x}}-1 \right ) }{ \left ( {{\rm e}^{2\,i\mu \,x}}+1 \right ) \left ( \left ( a+ib \right ) {{\rm e}^{2\,i\lambda \,x}}+ib-a \right ) \left ( a+ib \right ) }}\,{\rm d}x}}} \left ( \left ( \cos \left ( \lambda \,x \right ) \right ) ^{-2} \right ) ^{{\frac {ak}{\lambda \, \left ( {a}^{2}+{b}^{2} \right ) }}} \left ( {\frac {b\cos \left ( \lambda \,x \right ) +\sin \left ( \lambda \,x \right ) a}{\cos \left ( \lambda \,x \right ) }} \right ) ^{-2\,{\frac {ak}{\lambda \, \left ( {a}^{2}+{b}^{2} \right ) }}} \left ( {{\rm e}^{{\frac {{a}^{2}cx}{ \left ( {a}^{2}+{b}^{2} \right ) \left ( a+ib \right ) }}}} \right ) ^{-1} \left ( \left ( {{\rm e}^{2\,i\mu \,x}}+1 \right ) ^{{\frac {i{a}^{2}c}{ \left ( {a}^{2}+{b}^{2} \right ) \left ( a+ib \right ) \mu }}} \right ) ^{-1} \left ( {{\rm e}^{{\frac {{b}^{2}cx}{ \left ( {a}^{2}+{b}^{2} \right ) \left ( a+ib \right ) }}}} \right ) ^{-1} \left ( \left ( {{\rm e}^{2\,i\mu \,x}}+1 \right ) ^{{\frac {i{b}^{2}c}{ \left ( {a}^{2}+{b}^{2} \right ) \left ( a+ib \right ) \mu }}} \right ) ^{-1} \left ( {{\rm e}^{{\frac {kb}{\lambda \, \left ( {a}^{2}+{b}^{2} \right ) }\arctan \left ( {\frac {\sin \left ( \lambda \,x \right ) }{\cos \left ( \lambda \,x \right ) }} \right ) }}} \right ) ^{-2}}\,{\rm d}x+{{\rm e}^{{\frac {-i{a}^{2}c}{2\,{a}^{2}+2\,{b}^{2}}\int \!{\frac {4\,ia \left ( {{\rm e}^{2\,i\mu \,x}}-1 \right ) }{ \left ( {{\rm e}^{2\,i\mu \,x}}+1 \right ) \left ( \left ( a+ib \right ) {{\rm e}^{2\,i\lambda \,x}}+ib-a \right ) \left ( a+ib \right ) }}\,{\rm d}x}}}{{\rm e}^{{\frac {-i{b}^{2}c}{2\,{a}^{2}+2\,{b}^{2}}\int \!{\frac {4\,ia \left ( {{\rm e}^{2\,i\mu \,x}}-1 \right ) }{ \left ( {{\rm e}^{2\,i\mu \,x}}+1 \right ) \left ( \left ( a+ib \right ) {{\rm e}^{2\,i\lambda \,x}}+ib-a \right ) \left ( a+ib \right ) }}\,{\rm d}x}}} \left ( \left ( \cos \left ( \lambda \,x \right ) \right ) ^{-2} \right ) ^{{\frac {ak}{\lambda \, \left ( {a}^{2}+{b}^{2} \right ) }}} \left ( {\frac {b\cos \left ( \lambda \,x \right ) +\sin \left ( \lambda \,x \right ) a}{\cos \left ( \lambda \,x \right ) }} \right ) ^{-2\,{\frac {ak}{\lambda \, \left ( {a}^{2}+{b}^{2} \right ) }}} \right ) \left ( {{\rm e}^{{\frac {{a}^{2}cx}{ \left ( {a}^{2}+{b}^{2} \right ) \left ( a+ib \right ) }}}} \right ) ^{-1} \left ( \left ( {{\rm e}^{2\,i\mu \,x}}+1 \right ) ^{{\frac {i{a}^{2}c}{ \left ( {a}^{2}+{b}^{2} \right ) \left ( a+ib \right ) \mu }}} \right ) ^{-1} \left ( {{\rm e}^{{\frac {{b}^{2}cx}{ \left ( {a}^{2}+{b}^{2} \right ) \left ( a+ib \right ) }}}} \right ) ^{-1} \left ( \left ( {{\rm e}^{2\,i\mu \,x}}+1 \right ) ^{{\frac {i{b}^{2}c}{ \left ( {a}^{2}+{b}^{2} \right ) \left ( a+ib \right ) \mu }}} \right ) ^{-1} \left ( {{\rm e}^{{\frac {kb}{\lambda \, \left ( {a}^{2}+{b}^{2} \right ) }\arctan \left ( {\frac {\sin \left ( \lambda \,x \right ) }{\cos \left ( \lambda \,x \right ) }} \right ) }}} \right ) ^{-2}} \right ) \]

____________________________________________________________________________________

6.2.17.12 [677] problem number 12

problem number 677

Added January 20, 2019.

Problem 2.6.3.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ (a x^n y^m + b x) w_x + \tan ^k(\lambda y) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  (a*x^n*y^m + b*x)*D[w[x, y], x] + Tan[lambda*y]^k*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=   (a*x^n*y^m + b*x)*diff(w(x,y),x)+ tan(lambda*y)^k*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( a \left ( n-1 \right ) \int \!{{\rm e}^{b\int \! \left ( \tan \left ( y\lambda \right ) \right ) ^{-k}\,{\rm d}y \left ( n-1 \right ) }}{y}^{m} \left ( \tan \left ( y\lambda \right ) \right ) ^{-k}\,{\rm d}y+{x}^{-n+1}{{\rm e}^{b\int \! \left ( \tan \left ( y\lambda \right ) \right ) ^{-k}\,{\rm d}y \left ( n-1 \right ) }} \right ) \]

____________________________________________________________________________________

6.2.17.13 [678] problem number 13

problem number 678

Added January 20, 2019.

Problem 2.6.3.13 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ (a x^n + b x \tan ^m y) w_x + y^k w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  (a*x^n + b*x*Tan[y]^m)*D[w[x, y], x] + y^k*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=   (a*x^n + b*x*tan(y)^m)*diff(w(x,y),x)+ y^k*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( a \left ( n-1 \right ) \int \!{{\rm e}^{b\int \! \left ( \tan \left ( y \right ) \right ) ^{m}{y}^{-k}\,{\rm d}y \left ( n-1 \right ) }}{y}^{-k}\,{\rm d}y+{x}^{-n+1}{{\rm e}^{b\int \! \left ( \tan \left ( y \right ) \right ) ^{m}{y}^{-k}\,{\rm d}y \left ( n-1 \right ) }} \right ) \]

____________________________________________________________________________________

6.2.17.14 [679] problem number 14

problem number 679

Added January 20, 2019.

Problem 2.6.3.14 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ (a x^n + b x \tan ^m y) w_x + \tan ^k(\lambda y) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  (a*x^n + b*x*Tan[y]^m)*D[w[x, y], x] + Tan[lambda*y]^k*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=   (a*x^n + b*x*tan(y)^m)*diff(w(x,y),x)+  tan(lambda*y)^k*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( a \left ( n-1 \right ) \int \!{{\rm e}^{b\int \! \left ( \tan \left ( y \right ) \right ) ^{m} \left ( \tan \left ( y\lambda \right ) \right ) ^{-k}\,{\rm d}y \left ( n-1 \right ) }} \left ( \tan \left ( y\lambda \right ) \right ) ^{-k}\,{\rm d}y+{x}^{-n+1}{{\rm e}^{b\int \! \left ( \tan \left ( y \right ) \right ) ^{m} \left ( \tan \left ( y\lambda \right ) \right ) ^{-k}\,{\rm d}y \left ( n-1 \right ) }} \right ) \]

____________________________________________________________________________________

6.2.17.15 [680] problem number 15

problem number 680

Added January 20, 2019.

Problem 2.6.3.15 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ (a x^n \tan ^m y + b x) w_x + \tan ^k(\lambda y) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  (a*x^n*Tan[y]^m + b*x)*D[w[x, y], x] + Tan[lambda*y]^k*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=   (a*x^n*tan(y)^m+ b*x)*diff(w(x,y),x)+  tan(lambda*y)^k*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( a \left ( n-1 \right ) \int \!{{\rm e}^{b\int \! \left ( \tan \left ( y\lambda \right ) \right ) ^{-k}\,{\rm d}y \left ( n-1 \right ) }} \left ( \tan \left ( y \right ) \right ) ^{m} \left ( \tan \left ( y\lambda \right ) \right ) ^{-k}\,{\rm d}y+{x}^{-n+1}{{\rm e}^{b\int \! \left ( \tan \left ( y\lambda \right ) \right ) ^{-k}\,{\rm d}y \left ( n-1 \right ) }} \right ) \]

____________________________________________________________________________________