Added Feb. 17, 2019.
Problem Chapter 4.2.1.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = c w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to e^{\frac {c x}{a}} c_1\left (y-\frac {b x}{a}\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x) +b*diff(w(x,y),y) = c*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) {{\rm e}^{{\frac {cx}{a}}}}\]
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.1.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + y w_y = b w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + y*D[w[x, y], y] == b*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to e^{\frac {b x}{a}} c_1\left (y e^{-\frac {x}{a}}\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x) +y*diff(w(x,y),y) = b*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( y{{\rm e}^{-{\frac {x}{a}}}} \right ) {{\rm e}^{{\frac {bx}{a}}}}\]
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.1.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x w_x + y w_y = a w \]
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to x^a c_1\left (\frac {y}{x}\right )\right \}\right \}\]
Maple ✓
restart; pde := x*diff(w(x,y),x) +y*diff(w(x,y),y) = a*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {y}{x}} \right ) {x}^{a}\]
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.1.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x ( a w_x - b w_y ) = c y w \]
Mathematica ✓
ClearAll["Global`*"]; pde = x*(D[w[x, y], x] - b*D[w[x, y], y]) == c*y*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to e^{-b c x} x^{c (b x+y)} c_1(b x+y)\right \}\right \}\]
Maple ✓
restart; pde := x*(diff(w(x,y),x) -b*diff(w(x,y),y)) = c*y*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( bx+y \right ) {x}^{ \left ( bx+y \right ) c}{{\rm e}^{-cxb}}\]
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.1.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x w_x + y w_y = a x w \]
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to e^{a x} c_1\left (\frac {y}{x}\right )\right \}\right \}\]
Maple ✓
restart; pde := x*diff(w(x,y),x) +y*diff(w(x,y),y) = a*x*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={{\rm e}^{ax}}{\it \_F1} \left ( {\frac {y}{x}} \right ) \]
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.1.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ (x-a) w_x + (y-b) w_y = w \]
Mathematica ✓
ClearAll["Global`*"]; pde = (x - a)*D[w[x, y], x] + (y - b)*D[w[x, y], y] == w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to -(a-x) c_1\left (\frac {b-y}{a-x}\right )\right \}\right \}\]
Maple ✓
restart; pde := (x-a)*diff(w(x,y),x) +(y-b)*diff(w(x,y),y) = w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) = \left ( a-x \right ) {\it \_F1} \left ( {\frac {y-b}{a-x}} \right ) \]
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.1.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ (y+a x) w_x + (y- a x) w_y = b w \]
Mathematica ✗
ClearAll["Global`*"]; pde = (y + a*x)*D[w[x, y], x] + (y - a*x)*D[w[x, y], y] == b*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := (y+a*x)*diff(w(x,y),x) +(y-a*x)*diff(w(x,y),y) = b*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
time expired
____________________________________________________________________________________