Added Feb. 17, 2019.
Problem Chapter 4.2.3.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ a w_x + b w_y = (c x^3+d y^3) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (c*x^3 + d*y^3)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) e^{\frac {1}{4} \left (\frac {c x^4}{a}+\frac {d y^4}{b}\right )}\right \}\right \}\]
Maple ✓
restart; pde :=a*diff(w(x,y),x)+b*diff(w(x,y),y) = (c*x^3+d*y^3)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) {{\rm e}^{1/4\,{\frac {x \left ( c{x}^{3}{a}^{3}+4\,{a}^{3}d{y}^{3}-6\,{a}^{2}bdx{y}^{2}+4\,a{b}^{2}d{x}^{2}y-{b}^{3}d{x}^{3} \right ) }{{a}^{4}}}}}\]
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.3.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ x w_x + y w_y = a \sqrt {x^2+y^2} w \]
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*Sqrt[x^2 + y^2]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to e^{a \sqrt {x^2+y^2}} c_1\left (\frac {y}{x}\right )\right \}\right \}\]
Maple ✓
restart; pde :=x*diff(w(x,y),x)+y*diff(w(x,y),y) = a*sqrt(x^2+y^2)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {y}{x}} \right ) {{\rm e}^{a\sqrt {{x}^{2}+{y}^{2}}}}\]
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.3.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ x^2 w_x + x y w_y = y^2 (a x + b y) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = x^2*D[w[x, y], x] + x*y*D[w[x, y], y] == y^2*(a*x + b*y)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {y}{x}\right ) e^{\frac {1}{2} y^2 \left (a+\frac {b y}{x}\right )}\right \}\right \}\]
Maple ✓
restart; pde :=x^2*diff(w(x,y),x)+x*y*diff(w(x,y),y) = y^2*(a*x+b*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {y}{x}} \right ) {{\rm e}^{1/2\,{\frac {b{y}^{3}}{x}}+1/2\,{y}^{2}a}}\]
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.3.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ x^2 y w_x + a x y^2 w_y = (b x y +c x+ d y + k) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = x^2*y*D[w[x, y], x] + a*x*y^2*D[w[x, y], y] == (b*x*y + c*x + d*y + k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to x^b c_1\left (y x^{-a}\right ) \exp \left (-\frac {a^2 d y+a c x+a d y+a k+c x}{a^2 x y+a x y}\right )\right \}\right \}\]
Maple ✓
restart; pde :=x^2*y*diff(w(x,y),x)+a*x*y^2*diff(w(x,y),y) =(b*x*y +c*x+ d*y + k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={x}^{b}{\it \_F1} \left ( y{x}^{-a} \right ) {{\rm e}^{{\frac {-{a}^{2}yd+ \left ( -cx-dy-k \right ) a-cx}{x \left ( a+1 \right ) ya}}}}\]
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.3.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ a x y^2 w_x + b x^2 y w_y = (a n y^2+ b m x^2) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*x*y^2*D[w[x, y], x] + b*x^2*y*D[w[x, y], y] == (a*n*y^2 + b*m*x^2)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to x^n \left (a y^2\right )^{m/2} c_1\left (\frac {a y^2-b x^2}{2 a}\right )\right \}\right \}\]
Maple ✓
restart; pde :=a*x*y^2*diff(w(x,y),x)+b*x^2*y*diff(w(x,y),y) = (a*n*y^2+ b*m*x^2)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {{y}^{2}a-b{x}^{2}}{a}} \right ) \left ( {y}^{2}a \right ) ^{m/2}{x}^{n}\]
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.3.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ x^3 w_x + a y^3 w_y = x^2 (b x + c y) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = x^3*D[w[x, y], x] + a*y^3*D[w[x, y], y] == x^2*(b*x + c*y)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\begin {align*} & \left \{w(x,y)\to c_1\left (\frac {1}{2} \left (\frac {a}{x^2}-\frac {1}{y^2}\right )\right ) \exp \left (b x-\frac {c \tan ^{-1}\left (\frac {x \sqrt {\frac {a}{x^2}-\frac {1}{y^2}}}{\sqrt {\frac {x^2}{y^2}}}\right )}{\sqrt {\frac {a}{x^2}-\frac {1}{y^2}}}\right )\right \}\\& \left \{w(x,y)\to c_1\left (\frac {1}{2} \left (\frac {a}{x^2}-\frac {1}{y^2}\right )\right ) \exp \left (\frac {c \tan ^{-1}\left (\frac {x \sqrt {\frac {a}{x^2}-\frac {1}{y^2}}}{\sqrt {\frac {x^2}{y^2}}}\right )}{\sqrt {\frac {a}{x^2}-\frac {1}{y^2}}}+b x\right )\right \}\\ \end {align*}
Maple ✓
restart; pde :=x^3*diff(w(x,y),x)+a*y^3*diff(w(x,y),y) = x^2*(b*x+c*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {-{y}^{2}a+{x}^{2}}{{y}^{2}{x}^{2}}} \right ) {{\rm e}^{bx}} \left ( \sqrt {{\frac {-{y}^{2}a+{x}^{2}}{{y}^{2}{x}^{2}}}}x+\sqrt {{\frac {{x}^{2}}{{y}^{2}}}} \right ) ^{{c{\frac {1}{\sqrt {{\frac {-{y}^{2}a+{x}^{2}}{{y}^{2}{x}^{2}}}}}}}}\]
____________________________________________________________________________________