Added Feb. 25, 2019.
Problem Chapter 4.5.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ a w_x + b w_y = c \ln (\lambda x + \beta y) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Log[lambda*x + beta*y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) \exp \left (\frac {c \left (\frac {(a \beta y-b \beta x) \log (a (\beta y+\lambda x))}{a \lambda +b \beta }+x \log (\beta y+\lambda x)-x\right )}{a}\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) = c*ln(lambda*x + beta*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) = \left ( \beta \,y+\lambda \,x \right ) ^{{\frac {c \left ( \beta \,y+\lambda \,x \right ) }{a\lambda +b\beta }}}{\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) {{\rm e}^{-{\frac {c \left ( \beta \,y+\lambda \,x \right ) }{a\lambda +b\beta }}}}\]
____________________________________________________________________________________
Added Feb. 25, 2019.
Problem Chapter 4.5.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = \left ( c \ln (\lambda x)+ k \ln (\beta y) \right ) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (c*Log[lambda*x] + k*Log[beta*y])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to e^{-\frac {x (c+k)}{a}} (\lambda x)^{\frac {c x}{a}} (\beta y)^{\frac {k y}{b}} c_1\left (y-\frac {b x}{a}\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) = (c*ln(lambda*x)+k*ln(beta*y))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) = \left ( \lambda \,x \right ) ^{{\frac {cx}{a}}} \left ( \beta \,y \right ) ^{{\frac {ky}{b}}}{\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) {{\rm e}^{{\frac {-aky-cxb}{ab}}}}\]
____________________________________________________________________________________
Added Feb. 25, 2019.
Problem Chapter 4.5.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \ln ^n(\lambda x) w_y = \left ( c \ln ^m(\mu x)+ s \ln ^k(\beta y) \right ) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*Log[lambda*x]^n*D[w[x, y], y] == (c*Log[lambda*x]^m + s*Log[beta*y]^k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b (-\log (\lambda x))^{-n} \log ^n(\lambda x) \text {Gamma}(n+1,-\log (\lambda x))}{a \lambda }\right ) \exp \left (\int _1^x\frac {s \log ^k\left (\frac {\beta \left (-b \text {Gamma}(n+1,-\log (\lambda x)) \log ^n(\lambda x) (-\log (\lambda x))^{-n}+b \text {Gamma}(n+1,-\log (\lambda K[1])) (-\log (\lambda K[1]))^{-n} \log ^n(\lambda K[1])+a \lambda y\right )}{a \lambda }\right )+c \log ^m(\lambda K[1])}{a}dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x)+b*ln(lambda*x)^n*diff(w(x,y),y) = (c*ln(lambda*x)^m+s*ln(beta*y)^k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!{\frac {b \left ( \ln \left ( \lambda \,x \right ) \right ) ^{n}}{a}}\,{\rm d}x+y \right ) {{\rm e}^{\int ^{x}\!{\frac {1}{a} \left ( c \left ( \ln \left ( {\it \_b}\,\lambda \right ) \right ) ^{m}+s \left ( \ln \left ( \beta \, \left ( \int \!{\frac {b \left ( \ln \left ( {\it \_b}\,\lambda \right ) \right ) ^{n}}{a}}\,{\rm d}{\it \_b}-\int \!{\frac {b \left ( \ln \left ( \lambda \,x \right ) \right ) ^{n}}{a}}\,{\rm d}x+y \right ) \right ) \right ) ^{k} \right ) }{d{\it \_b}}}}\]
____________________________________________________________________________________
Added Feb. 25, 2019.
Problem Chapter 4.5.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \ln ^n(\lambda y) w_y = \left ( c \ln ^m(\mu x)+ s \ln ^k(\beta y) \right ) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*Log[lambda*y]^n*D[w[x, y], y] == (c*Log[lambda*x]^m + s*Log[beta*y]^k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {(-\log (\lambda y))^n \log ^{-n}(\lambda y) \text {Gamma}(1-n,-\log (\lambda y))}{\lambda }-\frac {b x}{a}\right ) \exp \left (\int _1^y\frac {\log ^{-n}(\lambda K[1]) \left (s \log ^k(\beta K[1])+c \log ^m\left (\frac {-a \text {Gamma}(1-n,-\log (\lambda y)) (-\log (\lambda y))^n \log ^{-n}(\lambda y)+a \text {Gamma}(1-n,-\log (\lambda K[1])) (-\log (\lambda K[1]))^n \log ^{-n}(\lambda K[1])+b \lambda x}{b}\right )\right )}{b}dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x)+b*ln(lambda*y)^n*diff(w(x,y),y) = (c*ln(lambda*x)^m+s*ln(beta*y)^k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -{\frac {a\int \! \left ( \ln \left ( y\lambda \right ) \right ) ^{-n}\,{\rm d}y}{b}}+x \right ) {{\rm e}^{\int ^{y}\!{\frac { \left ( \ln \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}}{b} \left ( c \left ( \ln \left ( \lambda \, \left ( \int \!{\frac { \left ( \ln \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}a}{b}}\,{\rm d}{\it \_b}-{\frac {a\int \! \left ( \ln \left ( y\lambda \right ) \right ) ^{-n}\,{\rm d}y}{b}}+x \right ) \right ) \right ) ^{m}+s \left ( \ln \left ( \beta \,{\it \_b} \right ) \right ) ^{k} \right ) }{d{\it \_b}}}}\]
____________________________________________________________________________________
Added Feb. 25, 2019.
Problem Chapter 4.5.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ \ln (\beta y) w_x + a \ln (\lambda x) w_y = b w \ln (\beta y) \]
Mathematica ✓
ClearAll["Global`*"]; pde = Log[beta*y]*D[w[x, y], x] + a*Log[lambda*x]*D[w[x, y], y] == b*w[x, y]*Log[beta*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to e^{b x} c_1\left (y \left (\log \left (\beta y e^{\frac {a x}{y}} x^{-\frac {a x}{y}} \lambda ^{-\frac {a x}{y}}\right )-1\right )\right )\right \}\right \}\]
Maple ✓
restart; pde := ln(beta*y)*diff(w(x,y),x)+a*ln(lambda*x)*diff(w(x,y),y) = b*w(x,y)*ln(beta*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {-\ln \left ( \lambda \,x \right ) xa+ax+\ln \left ( \beta \,y \right ) y-y}{a}} \right ) {{\rm e}^{bx}}\]
____________________________________________________________________________________
Added Feb. 25, 2019.
Problem Chapter 4.5.1.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a \ln (\lambda x)^n w_x + b \ln (\beta y)^k w_y = c \ln (\gamma x)^m w \]
Mathematica ✗
ClearAll["Global`*"]; pde = a*Log[lambda*x]^n*D[w[x, y], x] + b*Log[beta*y]^k*D[w[x, y], y] == c*Log[gamma*x]^m*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := a*ln(lambda*x)^n*diff(w(x,y),x)+b*ln(beta*y)^k*diff(w(x,y),y) = c*log(gamma*x)^m*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -\int \! \left ( \ln \left ( \lambda \,x \right ) \right ) ^{-n}\,{\rm d}x+\int \!{\frac { \left ( \ln \left ( \beta \,y \right ) \right ) ^{-k}a}{b}}\,{\rm d}y \right ) {{\rm e}^{\int \!{\frac {c \left ( -3\,\ln \left ( 2 \right ) +\ln \left ( x \right ) \right ) ^{m} \left ( \ln \left ( \lambda \,x \right ) \right ) ^{-n}}{a}}\,{\rm d}x}}\]
____________________________________________________________________________________