Added March 9, 2019.
Problem Chapter 4.6.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = c \sin (\lambda x+\mu y) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Sin[lambda*x + mu*y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) e^{-\frac {c \cos (\lambda x+\mu y)}{a \lambda +b \mu }}\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*sin(lambda*x+mu*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) {{\rm e}^{-{\frac {c\cos \left ( \lambda \,x+\mu \,y \right ) }{a\lambda +b\mu }}}}\]
____________________________________________________________________________________
Added March 9, 2019.
Problem Chapter 4.6.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = (c \sin (\lambda x)+ k \sin (\mu y) ) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (c*Sin[lambda*x] + k*Sin[mu*y])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) e^{-\frac {c \cos (\lambda x)}{a \lambda }-\frac {k \cos (\mu y)}{b \mu }}\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x)+ b*diff(w(x,y),y) = (c*sin(lambda*x)+k*sin(mu*y))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) {{\rm e}^{{\frac {-ka\cos \left ( \mu \,y \right ) \lambda -c\cos \left ( \lambda \,x \right ) b\mu }{a\lambda \,b\mu }}}}\]
____________________________________________________________________________________
Added March 9, 2019.
Problem Chapter 4.6.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x w_x + y w_y = a x \sin (\lambda x+ \mu y) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*Sin[lambda*x + mu*y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {y}{x}\right ) e^{-\frac {a x \cos (\lambda x+\mu y)}{\lambda x+\mu y}}\right \}\right \}\]
Maple ✓
restart; pde := x*diff(w(x,y),x)+ y*diff(w(x,y),y) = a*x*sin(lambda*x+mu*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {y}{x}} \right ) {{\rm e}^{-{a\cos \left ( \lambda \,x+\mu \,y \right ) \left ( {\frac {\mu \,y}{x}}+\lambda \right ) ^{-1}}}}\]
____________________________________________________________________________________
Added March 9, 2019.
Problem Chapter 4.6.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \sin ^n(\lambda x) w_y = (c \sin ^m(\mu x)+s \sin ^k(\beta y)) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*Sin[lambda*x]^n*D[w[x, y], y] == (c*Sin[mu*x]^m + s*Sin[beta*y]^k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b \sqrt {\cos ^2(\lambda x)} \sec (\lambda x) \sin ^{n+1}(\lambda x) \, _2F_1\left (\frac {1}{2},\frac {n+1}{2};\frac {n+3}{2};\sin ^2(\lambda x)\right )}{a \lambda n+a \lambda }\right ) \exp \left (\int _1^x\frac {s \sin ^k\left (\frac {\beta \left (-b \sqrt {\cos ^2(\lambda x)} \, _2F_1\left (\frac {1}{2},\frac {n+1}{2};\frac {n+3}{2};\sin ^2(\lambda x)\right ) \sec (\lambda x) \sin ^{n+1}(\lambda x)+b \sqrt {\cos ^2(\lambda K[1])} \, _2F_1\left (\frac {1}{2},\frac {n+1}{2};\frac {n+3}{2};\sin ^2(\lambda K[1])\right ) \sec (\lambda K[1]) \sin ^{n+1}(\lambda K[1])+a \lambda (n+1) y\right )}{a \lambda (n+1)}\right )+c \sin ^m(\mu K[1])}{a}dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x)+ b*sin(lambda*x)^n*diff(w(x,y),y) = (c*sin(mu*x)^m+s*sin(beta*y)^k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!{\frac {b \left ( \sin \left ( \lambda \,x \right ) \right ) ^{n}}{a}}\,{\rm d}x+y \right ) {{\rm e}^{\int ^{x}\!{\frac {1}{a} \left ( c \left ( \sin \left ( \mu \,{\it \_b} \right ) \right ) ^{m}+s \left ( -\sin \left ( \beta \, \left ( -\int \!{\frac {b \left ( \sin \left ( {\it \_b}\,\lambda \right ) \right ) ^{n}}{a}}\,{\rm d}{\it \_b}+\int \!{\frac {b \left ( \sin \left ( \lambda \,x \right ) \right ) ^{n}}{a}}\,{\rm d}x-y \right ) \right ) \right ) ^{k} \right ) }{d{\it \_b}}}}\]
____________________________________________________________________________________
Added March 9, 2019.
Problem Chapter 4.6.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \sin ^n(\lambda y) w_y = (c \sin ^m(\mu x)+s \sin ^k(\beta y)) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*Sin[lambda*y]^n*D[w[x, y], y] == (c*Sin[mu*x]^m + s*Sin[beta*y]^k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {\sqrt {\cos ^2(\lambda y)} \sec (\lambda y) \sin ^{1-n}(\lambda y) \, _2F_1\left (\frac {1}{2},\frac {1-n}{2};\frac {3-n}{2};\sin ^2(\lambda y)\right )}{\lambda -\lambda n}-\frac {b x}{a}\right ) \exp \left (\int _1^y\frac {\sin ^{-n}(\lambda K[1]) \left (s \sin ^k(\beta K[1])+c \sin ^m\left (\frac {-a \mu \sqrt {\cos ^2(\lambda y)} \, _2F_1\left (\frac {1}{2},\frac {1-n}{2};\frac {3-n}{2};\sin ^2(\lambda y)\right ) \sec (\lambda y) \sin ^{1-n}(\lambda y)+a \mu \sqrt {\cos ^2(\lambda K[1])} \, _2F_1\left (\frac {1}{2},\frac {1-n}{2};\frac {3-n}{2};\sin ^2(\lambda K[1])\right ) \sec (\lambda K[1]) \sin ^{1-n}(\lambda K[1])+b \lambda \mu x-b \lambda \mu n x}{b \lambda -b \lambda n}\right )\right )}{b}dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x)+ b*sin(lambda*y)^n*diff(w(x,y),y) = (c*sin(mu*x)^m+s*sin(beta*y)^k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {-a\int \! \left ( \sin \left ( y\lambda \right ) \right ) ^{-n}\,{\rm d}y+bx}{b}} \right ) {{\rm e}^{\int ^{y}\!{\frac { \left ( \sin \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}}{b} \left ( c \left ( -\sin \left ( {\frac {\mu }{b} \left ( a\int \! \left ( \sin \left ( y\lambda \right ) \right ) ^{-n}\,{\rm d}y-\int \!{\frac { \left ( \sin \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}a}{b}}\,{\rm d}{\it \_b}b-bx \right ) } \right ) \right ) ^{m}+s \left ( \sin \left ( \beta \,{\it \_b} \right ) \right ) ^{k} \right ) }{d{\it \_b}}}}\]
____________________________________________________________________________________