Added May 19, 2019.
Problem Chapter 6.4.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b w_y + c \coth (\gamma z) w_z = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*Coth[gamma*z]*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (y-\frac {b x}{a},\frac {\log (\cosh (\gamma z))}{\gamma }-\frac {c x}{a}\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+c*coth(gamma*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}},{\frac {1}{c} \left ( 4\,a\ln \left ( {\frac { \left ( \RootOf \left ( -8\,{\rm arccoth} \left ({\it \_Z}-1\right )+z \right ) -1 \right ) ^{2}}{\RootOf \left ( -8\,{\rm arccoth} \left ({\it \_Z}-1\right )+z \right ) -2}} \right ) -4\,\ln \left ( \RootOf \left ( -8\,{\rm arccoth} \left ({\it \_Z}-1\right )+z \right ) \right ) a-cx \right ) } \right ) \]
____________________________________________________________________________________
Added May 19, 2019.
Problem Chapter 6.4.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b \coth (\beta x) w_y + c \coth (\lambda x) w_z = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*Coth[beta*x]*D[w[x, y,z], y] +c*Coth[lambda*x]*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (y-\frac {b \log (\sinh (\beta x))}{a \beta },z-\frac {c \log (\sinh (\lambda x))}{a \lambda }\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*coth(beta*x)*diff(w(x,y,z),y)+c*coth(lambda*x)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left ( x,y,z \right ) ={\it \_F1} \left ( 1/2\,{\frac {2\,ya\beta +b\ln \left ( {\rm coth} \left (\beta \,x\right )-1 \right ) +b\ln \left ( {\rm coth} \left (\beta \,x\right )+1 \right ) }{a\beta }},1/2\,{\frac {2\,za\lambda +c\ln \left ( {\rm coth} \left (\lambda \,x\right )-1 \right ) +c\ln \left ( {\rm coth} \left (\lambda \,x\right )+1 \right ) }{a\lambda }} \right ) \]
____________________________________________________________________________________
Added May 19, 2019.
Problem Chapter 6.4.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b \coth (\beta y) w_y + c \coth (\lambda x) w_z = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*Coth[beta*y]*D[w[x, y,z], y] +c*Coth[lambda*x]*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (\frac {\log (\cosh (\beta y))}{\beta }-\frac {b x}{a},z-\frac {c \log (\sinh (\lambda x))}{a \lambda }\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*coth(beta*y)*diff(w(x,y,z),y)+c*coth(lambda*x)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left ( x,y,z \right ) ={\it \_F1} \left ( -1/2\,{\frac {1}{b\beta } \left ( 2\,bx\beta +\ln \left ( \RootOf \left ( \beta \,y-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) \right ) a-a\ln \left ( {\frac { \left ( \RootOf \left ( \beta \,y-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) -1 \right ) ^{2}}{\RootOf \left ( \beta \,y-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) -2}} \right ) \right ) },1/2\,{\frac {2\,za\lambda +c\ln \left ( {\rm coth} \left (\lambda \,x\right )-1 \right ) +c\ln \left ( {\rm coth} \left (\lambda \,x\right )+1 \right ) }{a\lambda }} \right ) \]
____________________________________________________________________________________
Added May 19, 2019.
Problem Chapter 6.4.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b \coth (\beta y) w_y + c \coth (\gamma z) w_z = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*Coth[beta*y]*D[w[x, y,z], y] +c*Coth[gamma*z]*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (\frac {\log (\cosh (\beta y))}{\beta }-\frac {b x}{a},\frac {b \log \left (\cosh ^2(\gamma z)\right )}{\gamma }-\frac {2 c \log (\cosh (\beta y))}{\beta }\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*coth(beta*y)*diff(w(x,y,z),y)+c*coth(gamma*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left ( x,y,z \right ) ={\it \_F1} \left ( -1/2\,{\frac {1}{b\beta } \left ( 2\,bx\beta +\ln \left ( \RootOf \left ( \beta \,y-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) \right ) a-a\ln \left ( {\frac { \left ( \RootOf \left ( \beta \,y-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) -1 \right ) ^{2}}{\RootOf \left ( \beta \,y-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) -2}} \right ) \right ) },{\frac {1}{c} \left ( 4\,a\ln \left ( {\frac { \left ( \RootOf \left ( -8\,{\rm arccoth} \left ({\it \_Z}-1\right )+z \right ) -1 \right ) ^{2}}{\RootOf \left ( -8\,{\rm arccoth} \left ({\it \_Z}-1\right )+z \right ) -2}} \right ) -4\,\ln \left ( \RootOf \left ( -8\,{\rm arccoth} \left ({\it \_Z}-1\right )+z \right ) \right ) a-cx \right ) } \right ) \]
____________________________________________________________________________________
Added May 19, 2019.
Problem Chapter 6.4.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a \coth (\lambda x) w_x + b \coth (\beta y) w_y + c \coth (\gamma z) w_z = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = a*Coth[lambda*x]*D[w[x, y,z], x] + b*Coth[beta*y]*D[w[x, y,z], y] +c*Coth[gamma*z]*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde := a*coth(lambda*x)*diff(w(x,y,z),x)+ b*coth(beta*y)*diff(w(x,y,z),y)+c*coth(gamma*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime'));
\[w \left ( x,y,z \right ) ={{\it \_C3}\,{\it \_C2}\,{\it \_C1} \left ( {\rm coth} \left (\lambda \,x\right )-1 \right ) ^{-1/2\,{\frac {{\it \_c}_{{1}}}{\lambda }}} \left ( {\rm coth} \left (\lambda \,x\right )+1 \right ) ^{-1/2\,{\frac {{\it \_c}_{{1}}}{\lambda }}} \left ( {\rm coth} \left (\lambda \,x\right ) \right ) ^{{\frac {{\it \_c}_{{1}}}{\lambda }}} \left ( {\rm coth} \left (\beta \,y\right )-1 \right ) ^{-1/2\,{\frac {{\it \_c}_{{2}}}{\beta }}} \left ( {\rm coth} \left (\beta \,y\right )+1 \right ) ^{-1/2\,{\frac {{\it \_c}_{{2}}}{\beta }}} \left ( {\rm coth} \left (\beta \,y\right ) \right ) ^{{\frac {{\it \_c}_{{2}}}{\beta }}} \left ( \left ( {\rm coth} \left (z/8\right )+1 \right ) ^{{\frac {a{\it \_c}_{{1}}}{c}}} \right ) ^{4} \left ( \left ( {\rm coth} \left (z/8\right )+1 \right ) ^{{\frac {b{\it \_c}_{{2}}}{c}}} \right ) ^{4} \left ( \left ( {\rm coth} \left (z/8\right )-1 \right ) ^{{\frac {a{\it \_c}_{{1}}}{c}}} \right ) ^{4} \left ( \left ( {\rm coth} \left (z/8\right )-1 \right ) ^{{\frac {b{\it \_c}_{{2}}}{c}}} \right ) ^{4} \left ( \left ( {\rm coth} \left (z/8\right ) \right ) ^{{\frac {a{\it \_c}_{{1}}}{c}}} \right ) ^{-8} \left ( \left ( {\rm coth} \left (z/8\right ) \right ) ^{{\frac {b{\it \_c}_{{2}}}{c}}} \right ) ^{-8}}\]
____________________________________________________________________________________
Added May 19, 2019.
Problem Chapter 6.4.4.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a \coth (\beta y) w_x + b \coth (\lambda x) w_y + c \coth (\gamma z) w_z = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = a*Coth[beta*y]*D[w[x, y,z], x] + b*Coth[lambda*x]*D[w[x, y,z], y] +c*Coth[gamma*z]*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde := a*coth(beta*y)*diff(w(x,y,z),x)+ b*coth(lambda*x)*diff(w(x,y,z),y)+c*coth(gamma*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime'));
\[{\it PDESolStruc} \left ( w \left ( x,y,z \right ) =-4\,{\frac {{\it \_c}_{{3}}\ln \left ( {\rm coth} \left (z/8\right )-1 \right ) }{c}}-4\,{\frac {{\it \_c}_{{3}}\ln \left ( {\rm coth} \left (z/8\right )+1 \right ) }{c}}+8\,{\frac {{\it \_c}_{{3}}\ln \left ( {\rm coth} \left (z/8\right ) \right ) }{c}}+{\it \_C1}+{\it \_F4} \left ( x,y \right ) ,[ \left \{ a{\rm coth} \left (\beta \,y\right ){\frac {\partial }{\partial x}}{\it \_F4} \left ( x,y \right ) +b{\rm coth} \left (\lambda \,x\right ){\frac {\partial }{\partial y}}{\it \_F4} \left ( x,y \right ) +{\it \_c}_{{3}}=0 \right \} ] \right ) \]
____________________________________________________________________________________