Added June 20, 2019.
Problem Chapter 7.4.5.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b w_y + c \sinh ^n(\lambda y) w_z = s \cosh ^m(\beta x)+k \sinh ^r(\gamma y) \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] + c*Sinh[lambda*y]^n*D[w[x,y,z],z]== s*Cosh[beta*x]^m+k*Sinh[gamma*y]^r; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (y-\frac {b x}{a},z-\frac {c \sqrt {\cosh ^2(\lambda y)} \text {sech}(\lambda y) \sinh ^{n+1}(\lambda y) \, _2F_1\left (\frac {1}{2},\frac {n+1}{2};\frac {n+3}{2};-\sinh ^2(\lambda y)\right )}{b \lambda n+b \lambda }\right )+\frac {s \sqrt {-\sinh ^2(\beta x)} \text {csch}(\beta x) \cosh ^{m+1}(\beta x) \, _2F_1\left (\frac {1}{2},\frac {m+1}{2};\frac {m+3}{2};\cosh ^2(\beta x)\right )}{a \beta m+a \beta }+\frac {k \sqrt {\cosh ^2(\gamma y)} \text {sech}(\gamma y) \sinh ^{r+1}(\gamma y) \, _2F_1\left (\frac {1}{2},\frac {r+1}{2};\frac {r+3}{2};-\sinh ^2(\gamma y)\right )}{b \gamma r+b \gamma }\right \}\right \}\]
Maple ✓
restart; local gamma; pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*sinh(lambda*y)^n*diff(w(x,y,z),z)=s*cosh(beta*x)^m+k*sinh(gamma*y)^r; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left ( x,y,z \right ) =\int ^{x}\!{\frac {1}{a} \left ( s \left ( \cosh \left ( \beta \,{\it \_a} \right ) \right ) ^{m}+k \left ( \sinh \left ( 1/8\,{\frac {ya-b \left ( x-{\it \_a} \right ) }{a}} \right ) \right ) ^{r} \right ) }{d{\it \_a}}+{\it \_F1} \left ( {\frac {ya-bx}{a}},-\int ^{x}\!{\frac {c}{a} \left ( \sinh \left ( {\frac { \left ( ya-b \left ( x-{\it \_a} \right ) \right ) \lambda }{a}} \right ) \right ) ^{n}}{d{\it \_a}}+z \right ) \]
____________________________________________________________________________________
Added June 20, 2019.
Problem Chapter 7.4.5.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ w_x + a \sinh ^n(\lambda x) w_y + b \cosh ^m(\beta x) w_z = s \cosh ^k(\gamma x) \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*Sinh[lambda*x]^n*D[w[x, y,z], y] + b*Cosh[beta*x]^m*D[w[x,y,z],z]== s*Cosh[gamma*x]^k; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (\frac {b \sinh (\beta x) \cosh ^{m+1}(\beta x) \, _2F_1\left (\frac {1}{2},\frac {m+1}{2};\frac {m+3}{2};\cosh ^2(\beta x)\right )}{(\beta m+\beta ) \sqrt {-\sinh ^2(\beta x)}}+z,y-\frac {a \sqrt {\cosh ^2(\lambda x)} \text {sech}(\lambda x) \sinh ^{n+1}(\lambda x) \, _2F_1\left (\frac {1}{2},\frac {n+1}{2};\frac {n+3}{2};-\sinh ^2(\lambda x)\right )}{\lambda n+\lambda }\right )+\frac {s \sqrt {-\sinh ^2(\gamma x)} \text {csch}(\gamma x) \cosh ^{k+1}(\gamma x) \, _2F_1\left (\frac {1}{2},\frac {k+1}{2};\frac {k+3}{2};\cosh ^2(\gamma x)\right )}{\gamma k+\gamma }\right \}\right \}\]
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ a*sinh(lambda*x)^n*diff(w(x,y,z),y)+ b*cosh(beta*x)^m*diff(w(x,y,z),z)=s*cosh(gamma*x)^k; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left ( x,y,z \right ) =\int \!s \left ( \cosh \left ( x/8 \right ) \right ) ^{k}\,{\rm d}x+{\it \_F1} \left ( -\int \!a \left ( \sinh \left ( \lambda \,x \right ) \right ) ^{n}\,{\rm d}x+y,-\int \!b \left ( \cosh \left ( \beta \,x \right ) \right ) ^{m}\,{\rm d}x+z \right ) \]
____________________________________________________________________________________
Added June 20, 2019.
Problem Chapter 7.4.5.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ w_x + a \cosh ^n(\lambda x) w_y + b \sinh ^m(\beta y) w_z = s \sinh ^k(\gamma z) \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*Cosh[lambda*x]^n*D[w[x, y,z], y] + b*Sinh[beta*x]^m*D[w[x,y,z],z]== s*Sinh[gamma*z]^k; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \int _1^xs \sinh ^k\left (\frac {\gamma \left (-b \sqrt {\cosh ^2(\beta x)} \, _2F_1\left (\frac {1}{2},\frac {m+1}{2};\frac {m+3}{2};-\sinh ^2(\beta x)\right ) \text {sech}(\beta x) \sinh ^{m+1}(\beta x)+b \sqrt {\cosh ^2(\beta K[1])} \, _2F_1\left (\frac {1}{2},\frac {m+1}{2};\frac {m+3}{2};-\sinh ^2(\beta K[1])\right ) \text {sech}(\beta K[1]) \sinh ^{m+1}(\beta K[1])+\beta (m+1) z\right )}{\beta (m+1)}\right )dK[1]+c_1\left (z-\frac {b \sqrt {\cosh ^2(\beta x)} \text {sech}(\beta x) \sinh ^{m+1}(\beta x) \, _2F_1\left (\frac {1}{2},\frac {m+1}{2};\frac {m+3}{2};-\sinh ^2(\beta x)\right )}{\beta m+\beta },\frac {a \sinh (\lambda x) \cosh ^{n+1}(\lambda x) \, _2F_1\left (\frac {1}{2},\frac {n+1}{2};\frac {n+3}{2};\cosh ^2(\lambda x)\right )}{(\lambda n+\lambda ) \sqrt {-\sinh ^2(\lambda x)}}+y\right )\right \}\right \}\]
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ a*cosh(lambda*x)^n*diff(w(x,y,z),y)+ b*sinh(beta*y)^m*diff(w(x,y,z),z)=s*sinh(gamma*z)^k; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left ( x,y,z \right ) =\int ^{x}\!s \left ( \sinh \left ( 1/8\,b\int \! \left ( \sinh \left ( \beta \, \left ( a\int \! \left ( \cosh \left ( \lambda \,{\it \_f} \right ) \right ) ^{n}\,{\rm d}{\it \_f}-\int \!a \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{n}\,{\rm d}x+y \right ) \right ) \right ) ^{m}\,{\rm d}{\it \_f}-1/8\,\int ^{x}\!b \left ( \sinh \left ( \beta \, \left ( \int \! \left ( \cosh \left ( {\it \_b}\,\lambda \right ) \right ) ^{n}\,{\rm d}{\it \_b}a-\int \!a \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{n}\,{\rm d}x+y \right ) \right ) \right ) ^{m}{d{\it \_b}}+z/8 \right ) \right ) ^{k}{d{\it \_f}}+{\it \_F1} \left ( -\int \!a \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{n}\,{\rm d}x+y,-\int ^{x}\!b \left ( \sinh \left ( \beta \, \left ( \int \! \left ( \cosh \left ( {\it \_b}\,\lambda \right ) \right ) ^{n}\,{\rm d}{\it \_b}a-\int \!a \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{n}\,{\rm d}x+y \right ) \right ) \right ) ^{m}{d{\it \_b}}+z \right ) \]
____________________________________________________________________________________
Added June 20, 2019.
Problem Chapter 7.4.5.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ w_x + a \tanh ^n(\lambda x) w_y + b \coth ^m(\beta x) w_z = s \coth ^k(\gamma x) \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*Tanh[lambda*x]^n*D[w[x, y,z], y] + b*Coth[beta*x]^m*D[w[x,y,z],z]== s*Coth[gamma*x]^k; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (z-\frac {b \coth ^{m+1}(\beta x) \, _2F_1\left (1,\frac {m+1}{2};\frac {m+3}{2};\coth ^2(\beta x)\right )}{\beta m+\beta },y-\frac {a \tanh ^{n+1}(\lambda x) \, _2F_1\left (1,\frac {n+1}{2};\frac {n+3}{2};\tanh ^2(\lambda x)\right )}{\lambda n+\lambda }\right )+\frac {s \coth ^{k+1}(\gamma x) \, _2F_1\left (1,\frac {k+1}{2};\frac {k+3}{2};\coth ^2(\gamma x)\right )}{\gamma k+\gamma }\right \}\right \}\]
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ a*tanh(lambda*x)^n*diff(w(x,y,z),y)+ b*coth(beta*x)^m*diff(w(x,y,z),z)=s*coth(gamma*x)^k; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left ( x,y,z \right ) =\int \!s \left ( {\rm coth} \left (x/8\right ) \right ) ^{k}\,{\rm d}x+{\it \_F1} \left ( -\int \!a \left ( \tanh \left ( \lambda \,x \right ) \right ) ^{n}\,{\rm d}x+y,-\int \!b \left ( {\rm coth} \left (\beta \,x\right ) \right ) ^{m}\,{\rm d}x+z \right ) \]
____________________________________________________________________________________
Added June 20, 2019.
Problem Chapter 7.4.5.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a \sinh (\lambda x) w_x + b \sinh (\beta y) w_y + c \sinh (\gamma z) w_z = k \cosh (\lambda x) \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*Sinh[lambda*x]*D[w[x, y,z], x] + b*Sinh[beta*y]*D[w[x, y,z], y] + c*Sinh[gamma*z]*D[w[x,y,z],z]== k*Cosh[lambda*x]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (\frac {\log \left (\tanh \left (\frac {\beta y}{2}\right ) \tanh ^{-\frac {b \beta }{a \lambda }}\left (\frac {\lambda x}{2}\right )\right )}{\beta },\frac {\log \left (\tanh \left (\frac {\gamma z}{2}\right ) \tanh ^{-\frac {c \gamma }{a \lambda }}\left (\frac {\lambda x}{2}\right )\right )}{\gamma }\right )+\frac {k \log (\sinh (\lambda x))}{a \lambda }\right \}\right \}\]
Maple ✓
restart; local gamma; pde := a*sinh(lambda*x)*diff(w(x,y,z),x)+ b*sinh(beta*y)*diff(w(x,y,z),y)+ c*sinh(gamma*z)*diff(w(x,y,z),z)=k*cosh(lambda*x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left ( x,y,z \right ) ={\frac {1}{a\lambda } \left ( {\it \_F1} \left ( {\frac {-2\,\arctanh \left ( {{\rm e}^{\beta \,y}} \right ) a\lambda +2\,\arctanh \left ( {{\rm e}^{\lambda \,x}} \right ) b\beta }{b\beta \,\lambda }},{\frac {-16\,\arctanh \left ( {{\rm e}^{z/8}} \right ) a\lambda +2\,\arctanh \left ( {{\rm e}^{\lambda \,x}} \right ) c}{\lambda \,c}} \right ) a\lambda +k\ln \left ( \sinh \left ( \lambda \,x \right ) \right ) \right ) }\]
____________________________________________________________________________________