Added June 26, 2019.
Problem Chapter 7.6.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a_1 \cot ^{n_1}(\lambda _1 x) w_x + b_1 \cot ^{m_1}(\beta _1 y) w_y + c_1 \cot ^{k_1}(\gamma _1 z) w_z = a_2 \cot ^{n_2}(\lambda _2 x) + b_2 \cot ^{m_2}(\beta _2 y)+ c_2 \cot ^{k_2}(\gamma _2 z) \]
Mathematica ✗
ClearAll["Global`*"]; pde = a1*Cot[lambda1*z]^n1*D[w[x, y,z], x] + b1*Cot[beta1*y]^m1*D[w[x, y,z], y] + c1*Cot[gamma1*z]^k1*D[w[x,y,z],z]==a2*Cot[lambda2*z]^n2+ b2*Cot[beta2*y]^m2 + c2*Cot[gamma2*z]^k2; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; local gamma; pde := a1*cot(lambda1*x)^n1*diff(w(x,y,z),x)+ b1*cot(beta1*y)^m1*diff(w(x,y,z),y)+ c1*cot(gamma1*z)^k1*diff(w(x,y,z),z)= a2*cot(lambda2*x)^n2+ b2*cot(beta2*y)^m2+ c2*cot(gamma2*z)^k2; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left ( x,y,z \right ) =\int ^{x}\!{\frac { \left ( \cot \left ( \lambda 1\,{\it \_f} \right ) \right ) ^{-{\it n1}}}{{\it a1}} \left ( {\it a2}\, \left ( \cot \left ( \lambda 2\,{\it \_f} \right ) \right ) ^{{\it n2}}+ \left ( \cot \left ( \gamma 2\,\RootOf \left ( \int \! \left ( \cot \left ( \lambda 1\,{\it \_f} \right ) \right ) ^{-{\it n1}}\,{\rm d}{\it \_f}-\int ^{{\it \_Z}}\!{\frac { \left ( \cot \left ( \gamma 1\,{\it \_a} \right ) \right ) ^{-{\it k1}}{\it a1}}{{\it c1}}}{d{\it \_a}}-\int \! \left ( \cot \left ( \lambda 1\,x \right ) \right ) ^{-{\it n1}}\,{\rm d}x+\int \!{\frac { \left ( \cot \left ( \gamma 1\,z \right ) \right ) ^{-{\it k1}}{\it a1}}{{\it c1}}}\,{\rm d}z \right ) \right ) \right ) ^{{\it k2}}{\it c2}+ \left ( \cot \left ( \beta 2\,\RootOf \left ( \int \! \left ( \cot \left ( \lambda 1\,{\it \_f} \right ) \right ) ^{-{\it n1}}\,{\rm d}{\it \_f}-\int ^{{\it \_Z}}\!{\frac { \left ( \cot \left ( \beta 1\,{\it \_a} \right ) \right ) ^{-{\it m1}}{\it a1}}{{\it b1}}}{d{\it \_a}}-\int \! \left ( \cot \left ( \lambda 1\,x \right ) \right ) ^{-{\it n1}}\,{\rm d}x+\int \!{\frac { \left ( \cot \left ( \beta 1\,y \right ) \right ) ^{-{\it m1}}{\it a1}}{{\it b1}}}\,{\rm d}y \right ) \right ) \right ) ^{{\it m2}}{\it b2} \right ) }{d{\it \_f}}+{\it \_F1} \left ( -\int \! \left ( \cot \left ( \lambda 1\,x \right ) \right ) ^{-{\it n1}}\,{\rm d}x+\int \!{\frac { \left ( \cot \left ( \beta 1\,y \right ) \right ) ^{-{\it m1}}{\it a1}}{{\it b1}}}\,{\rm d}y,-\int \! \left ( \cot \left ( \lambda 1\,x \right ) \right ) ^{-{\it n1}}\,{\rm d}x+\int \!{\frac { \left ( \cot \left ( \gamma 1\,z \right ) \right ) ^{-{\it k1}}{\it a1}}{{\it c1}}}\,{\rm d}z \right ) \]
____________________________________________________________________________________