Added June 2, 2019.
From example 3.5.7, page 215 nonlinear pde’s by Lokenath Debnath, 3rd edition.
Solve for \(u(x,y)\) \begin {align*} (y-u)u_x+(u-x)u_y&=x-y \end {align*}
with \(u=0\) on \(x y=1\)
Mathematica ✗
ClearAll["Global`*"]; pde = (y-u[x,y])*D[u[x, y], x] +(u[x,y]-x)*D[u[x, y], y] ==x-y; ic = u[x,1/x]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde,ic} ,u[x, y], {x, y}], 60*10]];
Failed Kernel error
Maple ✗
restart; pde :=(y-u(x,y))*diff(u(x,y),x)+(u(x,y)-x)*diff(u(x,y),y)=x-y; ic := u(x,1/x)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic],u(x,y))),output='realtime'));
unexpected occurrence of the variables x in the 2nd operand of u(x,1/x) in the given initial conditions Maple does not accept this form of Cauchy data
____________________________________________________________________________________